Improved Intelligent Artificial Bee Colony Algorithm and Its Application to Optimization of Injection and Production in Oilfield
LIU Bao1, ZHANG Yue1, YANG Jinying2
1. School of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; 2. Engineering Technology Research Institute, Beijing University of Science and Technology, Beijing 100083, China
Abstract:Traditional intelligent optimization algorithms used in solving complex nonlinear multi-parameter optimization problems have several issues, such as slow convergence, local optimization, high time complexity, and easy precocity. Thus, inspired by the human neuroendocrine immune (NEI) system, we propose an artificial bee colony (ABC) intelligence algorithm (NEI-ABC) based on biological regulation mechanisms. Based on the structure of the traditional ABC algorithm, the NEI-ABC algorithm adds a blue light guidance unit, honey source adjustment unit, and antenna orientation unit. These additions allow the NEI-ABC algorithm to enhance the search and exploration abilities of the leading bee, reconnaissance bee, and follower bee, thus improving its overall optimization performance. Our simulation results show that the NEI-ABC algorithm has better optimization performance compared to that of other traditional algorithms and plays a positive role in solving complex optimization problems such as oilfield production planning.
刘宝, 张月, 杨金莹. 智能人工蜂群改进算法及其在油田注采优化中的应用[J]. 信息与控制, 2023, 52(2): 245-256.
LIU Bao, ZHANG Yue, YANG Jinying. Improved Intelligent Artificial Bee Colony Algorithm and Its Application to Optimization of Injection and Production in Oilfield. Information and control, 2023, 52(2): 245-256.
[1] GAO H, FU Z, PUN C M, et al. An efficient artificial bee colony algorithm with an improved linkage identification method[J]. IEEE Transactions on Cybernetics, 2022, 52(6):4400-4414. [2] WANG L, ZHANG X, ZHANG X. Antenna array design by artificial bee colony algorithm with similarity induced search method[J/OL]. IEEE Transactions on Magnetics, 2019, 55(6)[2021-12-16]. https://ieeexplore.ieee.org/document/8653485/citations#citations. DOI:10.1109/TMAG.2019.2896921. [3] LI J Q, SONG M X, WANG L, et al. Hybrid artificial bee colony algorithm for a parallel batching distributed flow-shop problem with deteriorating jobs[J]. IEEE Transactions on Cybernetics, 2020, 50(6):2425-2439. [4] DING Y, XU N, DAI S, et al. An immune system-inspired reconfigurable controller[J]. IEEE Transactions on Control Systems Technology, 2016, 24(5):1875-1882. [5] 刘刚, 黄崇争. 基于HDABC算法的置换流水车间调度策略[J]. 控制工程, 2017, 24(9):1925-1929. LIU G, HUANG C Z. Replacement flow shop scheduling strategy based on hdabc algorithm[J]. Control Engineering, 2017, 24(9):1925-1929. [6] 叶奕茂, 赵华生, 金龙. 一种基于PSO-ABC的全局优化算法[J]. 广西民族大学学报(自然科学版), 2013, 19(4):55-59. YE Y M, ZHAO H S, JIN L. A global optimization algorithm based on PSO-ABC[J]. Journal of Guangxi University for Nationalities (Natural Science Edition), 2013, 19(4):55-59. [7] 蒋伟, 陈照光. 基于改进的人工蜂群算法的微电网储能系统容量优化配置[J]. 上海电力大学学报, 2021, 37(5):415-421, 427. JIANG W, CHEN Z G. Optimal capacity allocation of microgrid energy storage system based on improved artificial bee colony algorithm[J]. Journal of Shanghai Electric Power University, 2021, 37(5):415-421, 427. [8] 李宏娟, 徐格宁, 姚艳萍. 基于改进型ABC算法的异步电机参数估计方法[J]. 控制工程, 2018, 25(3):436-441. LI H J, XU G N, YAO Y P. Parameter estimation method of asynchronous motor based on improved ABC algorithm[J]. Control Engineering, 2018, 25(3):436-441. [9] 管雪梅, 黄青龙, 黄靖一, 等. 基于改进人工蜂群算法的大青杨晚材率预测[J]. 科学技术与工程, 2021, 21(26):11118-11124. GUAN X M, HUANG Q L, HUANG J Y, et al. Prediction of latewood rate of Populus euphratica based on improved artificial bee colony algorithm[J]. Science, Technology and Engineering, 2021, 21(26):11118-11124. [10] VIEIRA R, ARGENTO E, REVOREDO T. Trajectory Planning for car-like robots through curve parametrization and genetic algorithm optimization with applications to autonomous parking[J]. IEEE Latin America Transactions, 2022, 20(2):309-316. [11] 李六柯, 张则强, 邹宾森, 等. 免疫机制协作遗传算法的多目标拆卸线平衡优化[J]. 信息与控制, 2018, 47(6):671-679. LI L K, ZHANG Z Q, ZOU B S, et al. Multi-objective immune balance of disassembly genetic algorithm[J]. Information and Control, 2018, 47(6):671-679. [12] 刘宝, 丁永生, 王君红. 基于NEI调节机制的非线性智能优化控制器[J]. 控制与决策, 2008, 23(10):1159-1162. LIU B, DING Y S, WANG J H. Nonlinear intelligent optimization controller based on NEI regulation mechanism[J]. Control and Decision, 2008, 23(10):1159-1162. [13] CORUS D, OLIVETO P S, YAZDANI D. Fast immune system-inspired hypermutation operators for combinatorial optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(5):956-970. [14] YANG Z, DING Y, JIN Y, et al. Immune-endocrine system inspired hierarchical coevolutionary multiobjective optimization algorithm for IoT service[J]. IEEE Transactions on Cybernetics, 2020, 50(1):164-177. [15] CALISKAN A, ÇIL Z A, BADEM H, et al. Regression-based neuro-fuzzy network trained by ABC algorithm for high-density impulse noise elimination[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(6):1084-1095. [16] YANG L, SUN X, PENG L, et al. An agent-based artificial bee colony (ABC) algorithm for hyperspectral image endmember extraction in parallel[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(10):4657-4664. [17] 宋晓宇, 张卿, 常春光. 求解双层应急物资调度的改进蜂群算法[J]. 信息与控制, 2015, 44(6):729-738. SONG X Y, ZHANG Q, CHANG C G. Improved bee colony algorithm for solving double-layer emergency material scheduling[J]. Information and Control, 2015, 44(6):729-738. [18] 王野. 人工蜂群算法收敛性和稳定性分析[D]. 兰州:兰州交通大学, 2018. WANG Y. Convergence and stability analysis of artificial bee colony algorithm[D]. Lanzhou:Lanzhou Jiaotong University, 2018. [19] LIU L, SHAN L, DAI Y W, et al. Improved quantum bacterial foraging algorithm for tuning parameters of fractional-order PID controller[J]. Journal of Systems Engineering and Electronics, 2018, 29(1):166-175. [20] ZHANG Z X, XU Q S, JIANG M F, et al. The application of optimum decision in oilfield development[J]. Journal of Systems Engineering and Electronics, 2000, 11(2):5-10.