Obstacle Avoidance and Flight Control of Coaxial Rotor UAV Based on Improved Artificial Potential Field Method and Adaptive Neural Network
WEI Yiran1, WU Bi2, DENG Hongbin1, PAN Zhenhua3
1. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; 2. Beijing Blue Sky Innovation Center for Frontier Science, Beijing 100160, China; 3. School of Automation, Beijing Institute of Technology, Beijing 100081, China
Abstract:We propose a method based on a flight situation diagram and an improved artificial potential field algorithm for obstacle avoidance of coaxial rotor unmanned aerial vehicle (CR-UAV) flying in unknown and dangerous environments. First, a flight situation diagram is used to model obstacle information that considers the constraint conditions of flight control of CR-UAVs. By using this obstacle information, the CR-UAV can effectively avoid obstacles, avoid falling into a local minimum, and enhance its control and obstacle avoidance ability. Second, the CR-UAV adopts the unknown parameter adaptive control, which is based on radial basis function neural network (RBFNN) approximation, to approximate estimation and real-time compensation of disturbances for obstacle avoidance. Attitude tracking is realized using the method of state error feedback, which can facilitate attitude stability in obstacle avoidance flight. Finally, we carry out some simulation experiments. The results of our simulation experiments show that the CR-UAV has a good ability for attitude stability in obstacle avoidance flight.
危怡然, 吴碧, 邓宏彬, 潘振华. 基于改进人工势场法和自适应神经网络的共轴双旋翼无人机避障飞行控制[J]. 信息与控制, 2023, 52(2): 154-165.
WEI Yiran, WU Bi, DENG Hongbin, PAN Zhenhua. Obstacle Avoidance and Flight Control of Coaxial Rotor UAV Based on Improved Artificial Potential Field Method and Adaptive Neural Network. Information and control, 2023, 52(2): 154-165.
[1] 秦博, 王蕾. 无人机发展综述[J]. 飞航导弹, 2002, 7(8):4-10. QIN B, WANG L. Review of the development of UAV[J]. Flying Missiles, 2002, 7(8):4-10. [2] 陈黎. 军用无人机技术的发展现状及未来趋势[J]. 航空科学技术, 2013, 4(2):11-14. CHEN L. Development status and future trend of military UAV technology[J]. Aeronautical Science and Technology, 2013, 4(2):11-14. [3] 宋晨晖. 民用无人机应用进展[J]. 机电工程技术, 2018, 47(11):149-152. SONG C H. Application progress of civil UAV[J]. Mechanical and Electrical Engineering Technology, 2018, 47(11):149-152. [4] PRATS X, DELGADO L, RAMIREZ J, et al. Requirements, issues, and challenges for sense and avoid in unmanned aircraft systems[J]. Journal of Aircraft, 2012, 49(3):677-687. [5] SPRIESTERBACH T, BRUNS K, LI B, et al. Unmanned aircraft system airspace integration in the national airspace using a ground-based sense and avoid system[J]. Johns Hopkins APL Technical Digest, 2013, 32(3):572-583. [6] MANDUCHI R, CASTANO A, TALUKDER A, et al. Obstacle detection and terrain classification for autonomous off-road navigation[J]. Autonomous Robots, 2005, 18(1):81-102. [7] GONÇALO C, PEDRO E. Obstacle avoidance for unmanned aerial vehicles[J]. Journal of Intelligent & Robotic Systems, 2012, 65(1/2/3/4):203-217. [8] 施诗, 陈凯婷. 多旋翼无人机避障技术研究与展望[J]. 科技视界, 2020, 295(1):163-164. SHI S, CHEN K T. Research and prospect on obstacle avoidance technology of multi-rotor UAV[J]. Science and Technology Vision, 2020, 295(1):163-164. [9] 李波, 杨志鹏, 马浩. 一种无监督学习型神经网络的无人机全区域侦察路径规划[J]. 西北工业大学学报, 2021, 39(1):77-84. LI B, YANG Z P, MA H. An unsupervised learning neural network for unmanned aerial vehicle's whole area reconnaissance path planning[J]. Journal of Northwestern Polytechnical University, 2021, 39(1):77-84. [10] DONG Z N, ZHANG R L, et al. Study on UAV path planning approach based on fuzzy virtual force[J]. Chinese Journal of Aeronautics, 2010, 23(43):341-350. [11] LUIS M, LUIS A I, et al. Constrained generalized predictive control for obstacle avoidance in a quadcopter[J]. Robotica, 2018, 36(9):1-23. [12] 唐蕾, 刘广钟. 改进TD3算法在四旋翼无人机避障中的应用[J]. 计算机工程与应用, 2021, 57(11):254-259. TANG L, LIU G Z. Application of improved TD3 algorithm in obstacle-avoidance of quadrotor UAV[J]. Computer Engineering and Applications, 2021, 57(11):254-259. [13] 张哲, 吴剑, 代冀阳, 等. 基于改进A*算法的多无人机协同战术规划[J]. 兵工学报, 2020, 41(12):2530-2539. ZHANG Z, WU J, DAI J Y, et al. Cooperative tactical planning for multi-UAVs based on improved A* algorithm[J]. Acta Armamentarii, 2020, 41(12):2530-2539. [14] KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[M]//Autonomous Robot Vehicles. Berlin, Germany:Springer:500-505. [15] 张建英, 赵志萍, 刘暾. 基于人工势场法的机器人路径规划[J]. 哈尔滨工业大学学报, 2006, 38(8):1306-1309. ZHANG J Y, ZHAO Z P, LIU T. Robot path planning based on artificial potential field method[J]. Journal of Harbin Institute of Technology, 2006, 38(8):1306-1309. [16] PANYAKEOW P, MESBAHI M. Decentralized deconfliction algorithms for unicycle UAVs[C]//2010 American Control Conference. Piscataway, USA:IEEE, 2010:794-799. [17] 张佳龙, 闫建国, 张普, 等. 基于改进人工势场的无人机编队避障控制研究[J]. 西安交通大学学报, 2018, 52(11):112-119. ZHANG J L, YAN J G, ZHANG P, et al. Research on obstacle-avoidance control of UAV formation based on improved artificial potential field[J]. Journal of Xi'an Jiaotong University, 2018, 52(11):112-119. [18] 顾育津, 宋孝成, 刘晓培, 等. 基于拉普拉斯人工势场的无人机避障控制[J]. 中国科学院大学学报, 2020, 37(5):681-687. GU Y J, SONG X C, LIU X P, et al. Control of UAV obstacle avoidance based on Laplacian artificial potential field[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(5):681-687. [19] 董志岩. 共轴双旋翼无人直升机建模与控制算法研究[D]. 长春:吉林大学, 2016. DONG Z Y. Research on modeling and control algorithm of coaxial dual rotor unmanned helicopter[D]. Changchun:Jilin University, 2016. [20] 袁夏明, 朱纪洪, 毛漫. 共轴式无人直升机建模与鲁棒跟踪控制[J]. 控制理论与应用, 2014, 31(10):1285-1294. YUAN X M, ZHU J H, MAO M. Modeling and robust tracking control of coaxial unmanned helicopter[J]. Control Theory & Applications, 2014, 31(10):1285-1294. [21] WEI Y R, DENG H B, PAN Z H, et al. Research on a combinatorial control method for coaxial rotor aircraft based on sliding mode[J]. Defence Technology, 2022, 18(2):280-292. [22] PAN Z H, LI D F, YANG K, et al. Multi-robot obstacle avoidance based on the improved artificial potential field and PID adaptive tracking control algorithm[J]. Robotica, 2019, 37(11):1883-1903. [23] 管军, 易文俊, 常思江, 等. 某型无人机三维空间航迹跟踪控制方法研究[J]. 兵工学报, 2016, 37(1):64-70. GUAN J, YI W J, CHANG S J, et al. Study of flight path tracking and control of an UAV in 3D space[J]. Acta Armamentarii, 2016, 37(1):64-70. [24] ZHANG N, GAI W D, ZHANG G L. An active disturbance rejection control guidance law-based collision avoidance for unmanned aerial vehicles[J]. Aerospace Science & Technology, 2017, 77(6):658-669. [25] PENNEY R W. Collision avoidance within flight dynamics constraints for UAV applications[J]. Aeronautical Journal, 2005, 109(1094):193-199. [26] OMER C, IBRAHIM Z, GURAY Y. Establishing obstacle and collision free communication relay for UAVs with artificial potential fields[J]. Journal of Intelligent & Robotic Systems, 2013, 69(1/2/3/4):361-372. [27] 胡海兵, 汪国庆, 赖重远, 等. 四旋翼无人机自主避障系统的设计与实现[J]. 现代电子技术, 2018, 41(22):133-137. HU H B, WANG G, LAI Z Y, et al. Design and implementation of autonomous obstacle avoidance system for quadrotor UAV[J]. Modern Electronics Technique, 2018, 41(22):133-137. [28] 杨旭, 曹立佳, 刘洋. 基于自耦PID控制的四旋翼无人机姿态控制[J]. 兵器装备工程学报, 2021, 42(10):170-175. YANG X, CAO L J, LIU Y. Attitude control of quadrotor based on SC-PID control[J]. Journal of Ordnance Equipment Engineering, 2021, 42(10):170-175. [29] 刘金琨. RBF神经网络自适应控制机及MATLAB仿真[M]. 第2版. 北京:清华大学出版社, 2014:57-66. LIU J K. RBF neural network control for mechanical systems:Design, analysis, and MATLAB simulation[M]. 2nd ed. Beijing:Tsinghua University Press, 2014:57-66. [30] 李希, 谭建豪. 基于自适应RBFNN噪声估计的自抗扰控制在姿态控制中的应用[J]. 机器人, 2019, 41(1):9-18. LI X, TAN J H. Application of the active disturbance rejection control based on adaptive RBFNN noise estimating to attitude control[J]. Robot, 2019, 41(1):9-18.