基于多源信息融合的手势智能交互系统

Gesture Intelligent Interaction System Based on Multi-source Information Fusion

  • 摘要: 利用表面肌电信号(surface ElectroMyoGraphy,sEMG)设计了一个提高分类准确性和快速性的识别系统,用于捕获手势动作并进行人机交互.首先,基于无线肌电测量系统和飞行器自主搭建了智能交互平台;接着,采用滑动时间窗的方法对原始sEMG信号设计短时能量阈值进行信号活动段始末点的确定,从而抑制了动作刚执行时趋势段对识别结果的影响;然后,利用时域统计分析对sEMG信号进行特征分析,并提出了一种融合加速度特征信息和sEMG信号的方法来建立5种手势的分类模型.与仅使用sEMG信息源的方式相比,此方法提高了识别准确率.最后,手势控制飞行器运动的实验证明了本方法的可行性和有效性.

     

    Abstract: To capture gesture motions and subsequently process human-machine interactions, we design an identification system to improve the classification precision and rapidity performances using a surface ElectroMyoGraphy(sEMG)signal system. First, we establish an intelligent interactive platform based on the wireless sEMG measurement system and a quadrotor. Second, we design a transient energy threshold to determine the beginning and the end of the active signal segment of raw sEMG signals by sliding time window methods; this effectively suppresses the bad effect of the trend segment on the identification result. Third, we analyze the characteristics of sEMG signals using statistical analysis in time domain. We propose a scheme that combines the acceleration feature information with sEMG signals to build a classification model of five gesture motions. Compared with using a single sEMG information source, the recognition accuracy is improved. Finally, the experiments of the quadrotor control by gesture motions verify the feasibility and effectiveness of the proposed method.

     

/

返回文章
返回