基于优化的量子门节点神经网络的煤与瓦斯突出预测

Prediction of Coal and Gas Outburst Based on Optimized Quantum Gated Neural Networks

  • 摘要: 为了精准地预测煤与瓦斯突出风险等级,提出了一种基于子维进化的粒子群优化算法(sdPSO)和量子门节点神经网络(QGNN)的瓦斯突出风险等级预测模型sdPSO-QGNN.利用灰色关联分析(GRA)对突出影响因素进行降维处理,将筛选出的主控因素作为QGNN的输入,利用sdPSO对量子门节点神经网络参数进行优化,以提高量子门节点神经网络的全局与局部搜索能力,建立sdPSO-QGNN的瓦斯突出风险等级预测模型,实现对瓦斯突出风险的预测.实验结果表明,与BP(back propagation)神经网络、对称Alpha稳定分布的概率神经网络(SαS-PNN)、免疫粒子群算法优化的支持向量机(IPSO-SVM)、Memetic算法优化的极限学习机(Memetic-ELM)等预测模型相比,所提方法在提升模型泛化能力、提高预测精度方面效果显著.

     

    Abstract: To accurately predict the risk level of coal and gas outburst, we propose a prediction model of gas outburst risk level, i.e., sdPSO-QGNN, based on the quantum gated node neural network (QGNN) and subdimensional evolutionary particle swarm optimization (sdPSO). We employ the gray relational analysis (GRA) to reduce the dimension of the prominent influencing factors and use the selected main control factors as the input of QGNN. Then, we use sdPSO to optimize the parameters of QGNN to improve the global and local search capabilities of the QGNN. We establish an sdPSO-QGNN gas outburst risk level prediction model to predict the gas outburst risk. The experimental results show that, compared with other prediction models, such as BP, SαS-PNN, IPSO-SVM, and Memetic-ELM, the proposed method has a significant effect on the improvement of the generalization capability and prediction accuracy of the model.

     

/

返回文章
返回