面向双目标应急物资调度的改进差分进化算法

Improved Differential Evolution Algorithm to Solve Bi-objective Emergency Material Scheduling Problem

  • 摘要: 本文对应急物资调度模型的建立及求解该模型的优化算法进行了研究.首先,在资源受限情况下,以配送费用总成本最小和最大缺失损失最小为优化目标,建立了连续消耗问题的多供应点对多受灾点的应急物资调度模型.然后,通过引入DE/best/1变异策略与DE/rand/2变异策略对差分进化算法进行了改进,提出了一种基于双变异策略的改进差分进化算法,将Pareto非支配等级分层与拥挤距离的概念引入到改进差分进化算法中,对约束双目标调度模型进行求解.最后,通过两种不同规模的四组仿真实验,验证了本文提出模型及改进的差分进化算法的可行性和有效性.与基本差分进化算法对比,双变异策略的改进差分进化算法对相同应急物资调度问题进行求解时,得到了更多的Pareto前沿解个数,和较低的应急物资调度配送费用成本与较小的最大缺失损失,同时解分布的广泛性也得到了显著提高.

     

    Abstract: We aim to establish a suitable emergency material scheduling model and optimize a differential evolution algorithm to solve the model. Under the condition of limited resources, this model aims to obtain the minimum total cost of delivery and the maximum reduction of disaster sites about continuous consumption, considering multiple supply points and multiple disaster points. According to the concept of Pareto domination and crowding distance, differential evolution algorithm has been used to solve constraint and bi-objective models. We optimize a differential evolution algorithm by combining DE/best/1 variation strategy and DE/rand/2 variation strategy to form an improved algorithm involving a double-mutation strategy, which increases the algorithm's scapability. Our simulation test proves that the model and the algorithm are feasible and effective. According to comparison results involving big and small scale examples, the proposed algorithm can decrease the total delivery cost of emergency resource scheduling and obtain the maximum reduction of the disaster sites. Meanwhile, this improved algorithm increases the quantity of the Pareto non-dominated front solutions and increases extension distribution of the solutions.

     

/

返回文章
返回