张广玉, 何玉庆, 代波, 谷丰, 杨丽英, 韩建达, 刘光军. 面向自由飞行目标捕获的四旋翼最优轨迹规划[J]. 信息与控制, 2019, 48(4): 469-476, 485. DOI: 10.13976/j.cnki.xk.2019.9051
引用本文: 张广玉, 何玉庆, 代波, 谷丰, 杨丽英, 韩建达, 刘光军. 面向自由飞行目标捕获的四旋翼最优轨迹规划[J]. 信息与控制, 2019, 48(4): 469-476, 485. DOI: 10.13976/j.cnki.xk.2019.9051
ZHANG Guangyu, HE Yuqing, DAI Bo, GU Feng, YANG Liying, HAN Jianda, LIU Guangjun. Optimal Trajectory Planning of a Quadrotor toward Free Flying Target Catching[J]. INFORMATION AND CONTROL, 2019, 48(4): 469-476, 485. DOI: 10.13976/j.cnki.xk.2019.9051
Citation: ZHANG Guangyu, HE Yuqing, DAI Bo, GU Feng, YANG Liying, HAN Jianda, LIU Guangjun. Optimal Trajectory Planning of a Quadrotor toward Free Flying Target Catching[J]. INFORMATION AND CONTROL, 2019, 48(4): 469-476, 485. DOI: 10.13976/j.cnki.xk.2019.9051

面向自由飞行目标捕获的四旋翼最优轨迹规划

Optimal Trajectory Planning of a Quadrotor toward Free Flying Target Catching

  • 摘要: 自由飞行目标物捕获作为动态任务,在其被执行的过程中,四旋翼不仅要规划出一条时间最优的追踪轨迹,而且还要根据目标物的位置反馈信息实时对轨迹进行重新规划,以实现在最短的时间内追上目标物.针对这一问题,提出了诱导时间最优MPC(model predictive control)算法用于四旋翼的轨迹规划.该算法通过宽松约束条件下时间最优轨迹的引导,利用MPC的滚动优化策略,可以在每个控制周期内用反馈信息实时求解时间最优的追踪轨迹.为了躲避追踪路径中的障碍物,本文还提出了一种用动态线性约束表示障碍物的方法,以提高障碍物约束下轨迹求解的效率.结合诱导时间最优MPC的算法,可以在线实时地求解出具有障碍物避碰能力的时间最优轨迹.仿真结果表明了本文提出算法的有效性,其高效的计算效率也能满足实际系统对算法实时性的要求.

     

    Abstract: Free flying target catching is a dynamic task. When this task is executed, in order to catch up with the free flying target in the minumun time, the quadrotor not only need to plan a time optimal trajectory to pursue the target, but also need to replan the trajectory based on target's postion feedback in real time. Toward free flying target catching, We propose a guidance time optimal MPC (model predictive control)algorithm which can be used in trajectory planning of the quadrotor. Based on the receding-horizon optimization strategy, this algorithm can generate time optimal trajectory in every control cycle under the guidance of the time optimal trajectory in the relaxing constrains. In order to avoid obstacles in the pursuing path, a dynamic linear constrain of the obstacle is also presented, which can improve the computationally efficient. Combining with the dynamic linear constrain of the obstacle, the proposed algorithm can generated trajectory that can avoid obstacle reactively while catching up with the target in the minimum time. Simulation results show the validity of the proposed algorithm, and the higher computationally efficiency make it possible to apply it in the real system.

     

/

返回文章
返回