基于自适应平滑尺度粒子滤波的目标快速跟踪

Fast Target Tracking Based on Adaptive Smooth-scale Particle Filtering

  • 摘要: 针对视频目标跟踪中因目标尺度变化而导致跟踪失败的问题,采用粒子滤波对目标尺度进行估计,提出一种基于粒子滤波的快速自适应平滑尺度跟踪算法.首先,为增强不同候选尺度下同一目标的区分性,构造了一种基于方向梯度特征的概率分布特征;其次,利用先验知识来优化粒子滤波算法中建议密度分布函数,提高算法对尺度估计的准确度;最后,运用合理的尺度约束函数对所估计的目标尺度进行二次优化.另外,运用核相关滤波器对位置预测时,为减少因大幅尺度缩放所带来的干扰问题,通过设置合适的阈值,实现核相关滤波器尺度的自适应更新,有效提高了位置预测的准确度.实验结果表明,在尺度估计方面,所提算法比几种典型的尺度估计算法有所提高且实时性较好.

     

    Abstract: To address failures caused by changes in the target scale during visual tracking, we adopt particle filtering to track the target scale, and propose a fast tracking method based on adaptive smooth-scale particle filtering. First, to enhance the ability to identify the same target at different candidate scales, we construct a probability distribution feature based on a directional gradient. Then, to improve the accuracy of the scale estimation, we use prior knowledge to optimize the suggested density distribution function in the particle filtering algorithm. Finally, we use a reasonable scale constraint function to perform a second optimization of the estimated target scale. In addition, to reduce the interference caused by large-scale scaling, we set an appropriate threshold to adaptively update the scale of the kernel correlation filter when using it to predict the position, which effectively improves the accuracy of the position prediction. The experimental results show that the proposed scale-estimation algorithm performs better than several typical scale-estimation algorithms in terms of scale estimation and real-time performance.

     

/

返回文章
返回