基于高斯鸽群优化算法的典型工艺知识发现方法

A Typical Knowledge Discovery Method Based on Gaussian Pigeon-inspired Optimization Algorithm

  • 摘要: 针对离散制造系统中典型工艺发现以及知识重用问题,提出了基于高斯鸽群算法的典型工艺知识发现方法.在对工艺路线进行统一编码的基础上,同时考虑了相同工序信息以及工序的排序信息,提出了一种新的综合指标来描述工艺路线之间的相似度,并由此构建了相异度矩阵;同时为了优化聚类分析过程,将高斯项引入鸽群优化算法(Pigeon-inspired Optimization Algorithm,PIO),提出了高斯鸽群优化算法(Gaussian Pigeon-inspired Optimization Algorithm,GPIO),改善了聚类效果,实现了工艺路线的智能聚类并重用工艺知识来优化零件加工过程.最后以企业实际生产制造过程为例,验证了相似度计算方法以及高斯鸽群优化算法(GPIO)的合理性和实用性.

     

    Abstract: To discover a typical knowledge discovery and reuse process in discrete manufacturing systems, we propose a method of knowledge discovery based on Gaussian pigeon-inspired optimization algorithm. Based on the uniform encoding of process routes, we propose a new comprehensive indexto describe the similarity between process routes using the information of same process and the ordering information. Based on the comprehensive index, we construct the dissimilarity matrix. In addition, to optimize the clustering result, we propose the Gaussian pigeon-inspired optimization algorithm introduced by a Gauss term to achieve an intelligent clustering of process routes, and retrieve process knowledge from the clustering results to optimize the part machining process. Finally, we take a real manufacturing process as an example to verify the rationality and practicability of the similarity calculation method and Gaussian pigeon-inspired optimization algorithm.

     

/

返回文章
返回