游梁式抽油机故障集成诊断模型及优化算法

Integrated Diagnosis Model and Optimization Algorithm for Beam Pumping Unit Faults

  • 摘要: 针对游梁式抽油机的故障诊断问题,提出了一种基于振动分析和改进集成学习模型的游梁式抽油机故障诊断方法。采用Stacking集成学习模型将随机森林(Random Forest,RF)、支持向量机(Support Vector Machine,SVM)、梯度提升(Gradient Boosting,GB)和极端梯度提升(Extreme Gradient Boosting,XGboost)作为基学习器,多元线性回归作为元学习器,以提高单一模型的准确性和泛化能力。同时,提出了改进的沙猫群优化算法(improved sand cat swarm optimization algorithm,ISCSO),用于对模型超参数进行优化,解决手工调参难度大的问题。通过实验对比ISCSO-Stacking模型与其他模型的预测结果发现,ISCSO-Stacking模型的预测准确率达到了97%,优化后的超参数显著提升了模型性能,并降低了过拟合风险。

     

    Abstract: To address the challenge of fault diagnosis in beam pumping units, we propose a methodology based on vibration analysis and an enhanced integrated learning model. The Stacking integrated learning framework employs random forest (RF), support vector machine (SVM), gradient boosting (GB), and extreme gradient boosting (XGboost) as base learners, with multiple linear regression as the meta-learner, aiming to improve the accuracy and generalization capacity of a single model. Additionally, we introduce an improved sand cat swarm optimization (ISCSO) algorithm to optimize the hyperparameters of the model, addressing the challenges associated with manual parameter tuning. Experimental comparisons of prediction results between the ISCSO-stacking model and other models demonstrate that the ISCSO-stacking model achieves a prediction accuracy of 97%. Furthermore, the optimized hyperparameters substantially enhance model performance and reduce the risk of overfitting.

     

/

返回文章
返回