结合多分支纹理特征提取和注意力机制的肝脏肿瘤自动分割方法

Automatic Liver Tumor Segmentation Method Integrating Multi-branch Texture Feature Extraction and Attention Mechanism

  • 摘要: 针对计算机断层扫描图像中肝脏肿瘤边界模糊、类型多样、与周围组织对比度低等特点,以及现有网络对医学图像中的纹理信息利用不充分等问题,提出了一种结合多分支纹理特征提取和注意力机制的肝脏肿瘤自动分割方法。首先,设计了一个并行卷积编码器,替换基准网络U-Net中的双卷积模块,用于提取两种不同感受野下的表层特征;接着,提出了一个纹理特征提取网络,将其搭建于U-Net的跳跃连接部分,以提取多尺度特征下肝脏肿瘤的深层纹理信息;最后,在解码阶段引入了一个带有残差路径的通道注意力模块,旨在有效捕获通道间的依赖关系,增强肝脏肿瘤分割任务相关特征。将所提方法在LiTS2017和3DIRDCADb-01肝脏肿瘤分割数据集上进行了实验论证,结果表明,所提方法在评价指标和可视化结果上均优于对比方法,对于小尺寸和边界模糊的肿瘤分割具有优势,有望为肝脏肿瘤筛检提供新的参考。

     

    Abstract: To address the issues of fuzzy boundaries, diverse tumor types, low contrast with surrounding tissues in computerized tomography (CT) images, as well as insufficient utilization of texture information in existing networks for medical images, an automatic liver tumor segmentation method that combines multi-branch texture feature extraction and attention mechanism is proposed. Firstly, a parallel convolutional encoder is designed to replace the dual convolutional modules in the U-Net baseline network, aiming to extract superficial features under two different receptive fields. Secondly, a texture feature extraction network is introduced in the skip-connection part of the U-Net to extract deep texture information of liver tumors at multiple scales. Finally, a channel attention module with a residual path is incorporated in the decoding stage to effectively capture inter-channel dependencies and enhance the relevant features for liver tumor segmentation tasks. The proposed method is evaluated on the LiTS2017 and 3DIRDCADb-01 liver tumor segmentation datasets. Experimental results demonstrate superiority of the proposed method in terms of evaluation metrics and visualizations in comparison with the baseline methods, which shows advantages in segmenting small-sized and blurry boundary tumors, providing promising insights for liver tumor screening.

     

/

返回文章
返回