基于多尺度通道融合注意力的皮肤癌U-Net分割模型

A U-Net Segmentation Model for Skin Cancer Based on Multi-scale Channel Fusion Attention

  • 摘要: 精确且高效的皮肤癌病灶分割对于早期检测和诊断至关重要。然而,病变区域通常存在边缘模糊和复杂的颜色变异,使得分割工作面临诸多挑战。针对这些问题,研究提出了一种基于多尺度通道融合注意力机制的U-Net分割模型(MCFA-UNet),引入了多尺度注意力融合模块(MAF)来独立提取不同尺度的局部与全局特征;设计了多头通道交叉注意力融合Transformer(MCFT)跳跃连接模块和通道融合注意力模块(CFA)以有效整合跳跃连接和编码器间的特征信息。此外,还开发了全局特征提取模块(GFE),用来捕获输入图像的全局信息。MCFA-UNet在两个公开数据集ISIC2017和ISIC2018上对所提出的方法进行了验证,mIoU、DSC和ACC的分割指标上分别达到了84.8%、91.64%和96.83%,展现了模型优秀的分割性能。

     

    Abstract: The accurate and efficient segmentation of skin cancer lesions is crucial to the early detection and diagnosis of the condition. However, the often blurred edges and complex color variations in lesion areas complicate the segmentation of the lesions. To address these issues, a U-Net segmentation network based on the multi-scale channel fusion attention (CFA) mechanism (MCFA-UNet) is proposed. The proposed network integrates a multi-scale attention fusion module that independently extracts different scales of local and global features. Furthermore, a multihead channel cross-fusion transformer skip connection module and a CFA module are designed to effectively integrate feature information between skip connections and encoders. In addition, a global feature-extraction module is developed to capture the global information of the input image. Thereafter, MCFA-UNet is validated using two publicly available datasets, ISIC2017 and ISIC2018, and the segmentation metrics, mIoU, DSC, and ACC, reach 84.8%, 91.64% and 96.83%, respectively, demonstrating the excellent segmentation performance of the model.

     

/

返回文章
返回