分组挤压激励TCN-稀疏Transformer工程车载重状态识别模型

Group Squeeze-and-excitation TCN-Sparse Transformer Load State Recognition Model for Engineering Vehicle

  • 摘要: 为实时监测工程车的载重状态,提出了分组挤压激励时间卷积网络-稀疏变压器(GSTCN-STransformer)载重状态识别模型。依据车载传感器和GPS采集的速度、载重等实时数据,构造速度、载重等差分特征,并通过最大信息系数(MIC)方法进行特征选择;通过GSTCN提取包含通道相关性的局部特征,并通过STransformer(sparse Transformer)进一步提取全局特征;由全连接网络输出分类结果。采用真实工程车运输数据进行实验,结果表明准确率、宏精确率、宏召回率、宏F1值等性能指标均优于对比模型,进一步通过梯度加权类激活映射(Grad-CAM)实现对模型识别决策的可视化分析。

     

    Abstract: To enable real-time monitoring of the load states of engineering vehicles, we propose a group squeeze-and-excitation temporal convolutional network-sparse transformer (GSTCN-STransformer) load state recognition model. Based on real-time data including speed, load collected by onboard sensors and GPS, we construct the differential features, and then perform feature selection by maximum information coefficient (MIC) method. The GSTCN extracts local channel-correlated features, and then extracts the STransformer for global feature. Final classification is achieved via a fully connected network. Experiments conducted on real-world engineering vehicle transportation data demonstrate superior performance of the model over the comparison models in terms of accuracy, macro precision, macro recall, and macro F1 value. Additionally, gradient-weighted class activation mapping (Grad-CAM) provides visual analysis of the model's decision-making process.

     

/

返回文章
返回