面向病理图像分割的增强形态学U-Net

Enhanced Morphological U-Net for Pathological Image Segmentation

  • 摘要: 针对现有改进U-Net在病理图像分割任务中存在的局部与全局上下文特征建模能力不足及对目标形态学特征学习能力弱的问题,提出一种面向病理图像分割的增强形态学U-Net(MKU-Net)。在下采样阶段,提出了多尺度通道融合模块、双路径通道及空间注意力增强模块,并采取模块化方法搭建层级化结构,在不显著增加参数量的前提下,增强了网络的局部特征表达能力和全局信息理解能力。在跳跃链接阶段,提出了融合科尔莫戈洛夫-阿诺尔德表示定理的形态学特征增强模块,该模块将结构元素设计为可学习参数,并结合表示定理中的B样条化方法模拟形态学操作,从而提升对复杂形态学特征的学习能力。在上采样阶段,引入了内容感知特征重排上采样,并提出基于欧氏距离阈值分类方法的边缘增强模块,模块充分利用分割信息和边缘信息的互补性对特征图进行边缘特征增强,从而提高边缘分割完整度。实验表明,MKU-Net在多个病理图像数据集上的性能优于大部分竞争网络,在GlaS数据集和CoCaHis数据集上的Dice系数为92.85%和87.16%。

     

    Abstract: To address the insufficiency of local and global context feature modeling capabilities and the weak learning ability of target morphological features in the existing improved U-Net for pathological image segmentation tasks, we propose an enhanced morphological U-Net (MKU-Net) for pathological image segmentation. In the downsampling stage, we propose a multi-scale channel fusion module, a dual-path channel and spatial attention enhancement module, and build a hierarchical structure by using a modular approach which enhances the network's local feature expression ability and global information understanding ability without significantly increasing the number of parameters. In the skip connection stage, we propose a morphological feature enhancement module integrating the Kolmogorov-Arnold representation theorem. The module designs the structural element as a learnable parameter and combines the B-spline method in the representation theorem to simulate morphological operations, thereby enhancing the learning ability of complex morphological features. In the upsampling stage, we introduce content-aware feature rearrangement upsampling, and propose an edge enhancement module based on the Euclidean distance threshold classification method. The module fully utilizes the complementarity of segmentation information and edge information to enhance the edge features of the feature map, thereby improving the completeness of edge segmentation. Experiments show that the performance of MKU-Net on multiple pathological image datasets is superior to most competing networks, with Dice coefficients of 92.85% and 87.16% on the GlaS dataset and CoCaHis dataset, respectively.

     

/

返回文章
返回