双层结构预测控制中积分过程的稳态目标优化方法

The Optimization Method of Steady-State Objective for the Integrating Process in a Two-layer Model Predictive Control System

  • 摘要: 讨论了积分过程的稳态优化问题.针对积分过程的模型不确定性对双层结构预测控制中稳态目标计算的影响,在基于“点”模型的经济优化模型的基础上,考虑输入增量变化和输出变量初始值的误差对稳态目标计算的影响,采用迭代补偿的方法,不断的修正“点”模型的等式约束条件,更新优化设定点.通过仿真可以看出,新的稳态优化设定点是一个渐近的动态过渡过程,稳态优化的计算偏差大幅下降,有效地改善了模型不确定性对稳态目标计算的影响.

     

    Abstract: Model uncertainty can deteriorate the steady state objective in a two-layer model predictive control system. Based on the economic optimization model with a point model, we propose an iterative compensation method to correct the equality constraints of the point model, considering the change of the inputs' increment and the errors of the outputs' original values, and to update the optimal set-points. The calculation of optimal set-points becomes an asymptotic, dynamic transient process. The simulations show that the error of the steady-state objective is largely diminished and the influences of model uncertainty on steady-state optimization are improved effectively.

     

/

返回文章
返回