基于奇异值分解的PID型参数优化迭代学习控制算法

PID-type Parameter Optimal Iterative Learning Control Algorithm Based on Singular Value Decomposition

  • 摘要: 针对离散线性系统的跟踪控制问题建立了一种基于奇异值分解的PID型参数优化迭代学习控制算法.为克服传统参数优化迭代学习控制算法只适用于正定性系统模型的局限性,该算法建立范数最优性能指标函数,通过对系统模型矩阵的奇异值分解得到学习参数增益矩阵,使算法应用于模型为非正定的系统时仍然保证闭环跟踪误差单调收敛至零.还将PID 型控制器引入到参数优化迭代学习控制算法设计中,以达到提高算法学习效率的目的;并对算法的收敛性和算法特性进行了理论分析并给出相关证明.最后,通过仿真实例验证了该算法的有效性.

     

    Abstract: We propose a PID (proportion-integration-differentiation) parameter optimal iterative learning control algorithm based on singular value decomposition to solve the tracking control problems of discrete linear systems. The traditional parameter optimal iterative learning control algorithm can guarantee tracking errors converging to zero only under the condition that the original plant is positive-defined. In order to overcome this limitation, the proposed algorithm establishes the norm optimal performance index and obtains the learning gain matrix by applying singular value decomposition to the original plant. The algorithm guarantees that the closed-loop tracking errors of this algorithm converge monotonously to zero even when the original plant is non-positive. We apply a PID controller to the design of parameter optimal iterative learning control to improve the learning efficiency of this algorithm. Theoretical analysis and relevant proof of the convergence properties of this algorithm are also given. The result of the simulation verifies the effectiveness of the proposed algorithm.

     

/

返回文章
返回