基于参数辨识的短期4D航迹预测

徐琴, 汤新民, 韩松臣, 卢奕羽

徐琴, 汤新民, 韩松臣, 卢奕羽. 基于参数辨识的短期4D航迹预测[J]. 信息与控制, 2014, 43(4): 501-505,512. DOI: 10.13976/j.cnki.xk.2014.0501
引用本文: 徐琴, 汤新民, 韩松臣, 卢奕羽. 基于参数辨识的短期4D航迹预测[J]. 信息与控制, 2014, 43(4): 501-505,512. DOI: 10.13976/j.cnki.xk.2014.0501
XU Qin, TANG Xinmin, HAN Songchen, LU Yiyu. Short-Term 4D Trajectory Prediction Based on Parameter Identification[J]. INFORMATION AND CONTROL, 2014, 43(4): 501-505,512. DOI: 10.13976/j.cnki.xk.2014.0501
Citation: XU Qin, TANG Xinmin, HAN Songchen, LU Yiyu. Short-Term 4D Trajectory Prediction Based on Parameter Identification[J]. INFORMATION AND CONTROL, 2014, 43(4): 501-505,512. DOI: 10.13976/j.cnki.xk.2014.0501
徐琴, 汤新民, 韩松臣, 卢奕羽. 基于参数辨识的短期4D航迹预测[J]. 信息与控制, 2014, 43(4): 501-505,512. CSTR: 32166.14.xk.2014.0501
引用本文: 徐琴, 汤新民, 韩松臣, 卢奕羽. 基于参数辨识的短期4D航迹预测[J]. 信息与控制, 2014, 43(4): 501-505,512. CSTR: 32166.14.xk.2014.0501
XU Qin, TANG Xinmin, HAN Songchen, LU Yiyu. Short-Term 4D Trajectory Prediction Based on Parameter Identification[J]. INFORMATION AND CONTROL, 2014, 43(4): 501-505,512. CSTR: 32166.14.xk.2014.0501
Citation: XU Qin, TANG Xinmin, HAN Songchen, LU Yiyu. Short-Term 4D Trajectory Prediction Based on Parameter Identification[J]. INFORMATION AND CONTROL, 2014, 43(4): 501-505,512. CSTR: 32166.14.xk.2014.0501

基于参数辨识的短期4D航迹预测

基金项目: 国家自然科学基金自助项目(61174180);江苏省自然科学基金资助项目(BK2010502);江苏省学研联合创新基金资助项目(BY2012014);南京航空航天大学研究生创新基地(实验室)开放基金资助项目(kfjj120218);中央高校基本科研业务费专项资金资助项目
详细信息
    作者简介:

    徐琴(1988-),女,硕士生.研究领域为新一代空中交通管制自动化系统等.
    汤新民(1979-),男,博士,副教授.研究领域为新一代空中交通管理系统,先进场面引导与控制系统等.
    韩松臣(1968-),男,博士,教授.研究领域为新一代空中交通管理系统,先进场面引导与控制系统,空域与机场容量与安全性,智能交通与新航行系统技术等.

    通讯作者:

    徐琴,xuqinnuaa@126.com

  • 中图分类号: V355

Short-Term 4D Trajectory Prediction Based on Parameter Identification

  • 摘要: 由于实际飞行过程中存在许多不确定因素,为保证空中交通的安全和通畅,必须对航空器进行短期4D航迹预测,实时掌握航空器的运行动态.首先建立航空器等速巡航的运动学模型以及等角航迹推测模型,其次利用广播式自动相关监视(ADS-B)接收器采集实时航迹数据,并运用极大似然法则与牛顿-拉夫逊迭代算法对模型中的校正空速进行辨识,最后利用辨识结果及等角航迹推测模型推算航空器的过点时间.实际算例表明,此方法能够准确地预测航空器等速巡航阶段的短期飞行航迹,2 min内航空器过点时间误差可控制在5 s内.
    Abstract: Due to various uncertain factors existed in the actual flight process, short-term 4D trajectory prediction of aircraft must be used to master the real time dynamic operation of the aircraft and ensure the safety and patency of air traffic. We establish the kinematics model of the constant speed cruise phase and the isometric track forecast model of aircraft. In the model, we use Maximum likelihood rule and Newton-Ralph iterative algorithm to identify the calibrated air speed with the real-time track data which are received by ADS-B (automatic dependent surveillance broadcast) receiver. Aircraft short-term trajectory is calculated with the identified result and isometric track forecast model. Case study shows that this method can accurately predict the short flight trajectory of the constant speed cruise phase, and point-passing time error can be controlled within 5 s in 2 min.
  • [1] Olaf D,Thorsten A,Cristiano B,et al. SESAR D3: The ATM target concept[R]. Bruxelles,Belgium: Eurocontrol,2007: 1-17.
    [2] Swenson H,Barhydt R,Landis M. Next generation air transportation system (NGATS) air traffic management (ATM)-airspace project[R]. Washington,USA: NASA,2006: 25-28.
    [3] 吕小平.中国民航新一代空中交通管理系统发展总体框架[J].中国民用航空,2007,80(8): 24-26.
    Lü X P. General framework of China's new-generation civil aviation ATM system[J].China Civil Aviation,2007,80(8): 24-26.
    [4] Anthony W. Trajectory prediction concepts for next generation air traffic management[C]//3rd USA/Europe Air Traffic Management R&D Seminar. Bruxelles,Belgium: Eurocontrol,2000: 1-10.
    [5] Prevost C G,Desbiens A,Gagnon E.Extended Kalman filter for state estimation and trajectory prediction of a moving object detected by an unmanned aerial vehicle[C]//American Control Conference. Piscataway,NJ,USA: IEEE,2007: 1805-1810.
    [6] Chester G,William N C. Using flight manual data to derive aero-propulsive models for predicting air-craft trajectories[C]//AIAA Aircraft Technology,Integration,and Operations (ATIO) Forum. Los Angeles,CA,USA: AIAA,2002: 1-7.
    [7] 汤新民,韩云祥,韩松臣.基于混杂系统模型的航空器4D航迹推测[J].南京航空航天大学学报,2012,44(1):105-112.
    Tang X M,Han Y X,Han S C. Aircraft 4D trajectory estimation based on hybrid system model[J]. Journal of Nanjing University of Aeronautics & Astronautics,2012,44(1): 105-112.
    [8] 彭瑛,胡明华,张颖.动态航迹推测方法[J].交通运输工程学报,2005,5(1): 61-65.
    Peng Y,Hu M H,Zhang Y. Conjecture method of dynamic flying track[J]. Journal of Traffic and Transportation Engineering,2005,5(1): 61-65.
    [9] 瞿英俊,胡明华.动态航迹推测改进模型[C]//2008第四届中国智能交通年会论文集.北京:全国智能运输系统协调指导小组办公室,2008: 32-37.
    Qu Y J,Hu M H.The improved model of aircraft dynamic trajectory prediction[C]//Proceedings of International Conference of China Communication and Transport. Beijing: Leading Group Office of the National Intelligent Transportation System Coordination,2008: 32-37.
    [10] 罗兆文,张沛,王文,等.基于GPS的飞机航迹预测方法研究[J].海洋测绘,2009,29(2): 35-38.
    Luo Z W,Zhang P,Wang W,et al. Research on the prediction method of the airplane trajectory base on GPS[J]. Hydrographic Surveying and Charting,2009,29(2): 35-38.
    [11] 姜殿民,郑鹍鹏.导弹靶试数据弹道重建方法[J].四川兵工学报,2012,33(7): 34-36.Zhang D M,Zheng K P. Reconstruction method of missile flight-test data[J]. Journal of Sichuan Ordnance,2012,33(7): 34-36.
    [12] 于雪梅,程伟,谷伟岩.极大似然法在飞机起飞性能参数辨识中的应用[J].飞行力学,2012,30(3): 201-205.Yu X M,Cheng W,Gu W Y. Application of maximum likelihood estimation to the parameter,identification of airplane take-off performance[J]. Flight Dynamics,2012,30(3): 201-205.
    [13] Eurocontrol Experimental Centre.User manual for the base of aircraft data(BADA)REVISION 3.8[R].Bruxelles,Belgium: Eurocontrol,2010: 1-83.
    [14] Hsu L Y,Chen T L. Vehicle dynamic prediction systems with on-line identification of vehicle parameters and road conditions[J]. Sensors,2012,12(11): 15778-15800.
计量
  • 文章访问数:  1766
  • HTML全文浏览量:  0
  • PDF下载量:  355
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-13
  • 发布日期:  2014-08-19

目录

    /

    返回文章
    返回
    x