Internet中的自适应神经网络终端滑模拥塞控制算法

Congestion Control Algorithm for the Internet Based on Adaptive Neural Network Terminal Sliding Mode

  • 摘要: 为抑制Internet中的拥塞现象,基于终端滑模控制理论和径向基函数(RBF)神经网络提出了一种拥塞控制算法.将网络参数的变化及非传输控制协议(TCP)数据流的影响等效为系统的不确定项,设计了一种新的终端滑模面,使滑动模态具有更短的有限收敛时间,并证明了滑动模态的渐近稳定性.使用RBF神经网络估计了控制器中不确定项的上界,并根据李亚普诺夫稳定性理论得出了神经网络权值的自适应律.与PID控制器和传统的终端滑模控制器进行了相同网络条件下的仿真对比实验,结果表明:所提出的算法具有更好的鲁棒性和更快的收敛速度.

     

    Abstract: To constrain congestion phenomenon in the internet, we propose a congestion control algorithm based on terminal sliding mode control theory and radial basis function (RBF) neural network. Taking the variation of network parameters and the effect of non-transmission control protocol (TCP) data flows as the uncertainty existing in the system, we design a novel terminal sliding surface to shorten the finite convergence time for the sliding mode. Moreover, we prove the asymptotical stability of the sliding mode. Using the RBF neural network, we estimate the upper bound of the uncertainty in the controller, and then obtain an adaptive law of neural network weights based on Lyapunov stability theory. Simulation experiments on the same network conditions show that our algorithm has better robustness and faster convergence rate than the PID controller and the traditional terminal sliding mode controller.

     

/

返回文章
返回