无线传感器网络中基于核函数回归的数据融合优化算法

Data Fusion Optimization Strategy Based on Kernel Function Regression for Wireless Sensor Networks

  • 摘要: 针对无线传感器网络数据传输中的能量约束问题,为减少节点之间数据通信量,降低网络能耗,本文提出一种可减少数据传输量的数据融合方法.该方法建立在感应数据回归函数的基础上,运用加权最小二乘法和核函数方法优化节点数据模型.传感节点之间数据通信时不需要传输所有感应数据,只传递模型参数.仿真结果表明,本文提出的数据传输策略可以有效的对监测区域内采样点的感应数据进行估计和预测,降低总体网络能耗,延长网络生命周期,在实际应用中切实可行.

     

    Abstract: Aiming at the problem of energy constraints in data transmission, to reduce the amount of sensory data communication and energy consumption in wireless sensor networks, we propose an effective data fusion strategy based on the regression function of sensory data. This strategy adopts the weighted least squares method and the kernel function method to optimize the sensory data model. Rather than transmitting all measurement data to nodes, nodes transfer the model parameters only. Experiment results show that the proposed data transmission strategy, which estimates induction data in the monitoring area, can reduce the total energy consumption and prolong the lifetime of wireless sensor networks, and it is effective in practical application.

     

/

返回文章
返回