Concurrent Transmission Performance Modeling of Wireless Multimedia Sensor Network and Its Experimental Evaluation
-
摘要: 针对无线多媒体传感器网络(wireless multimedia sensor network,WMSN)在多路视频并发传输性能方面缺乏定量化评估的问题,对WMSN的并发性能进行了建模分析与实验验证.首先利用排队论和概率论原理构造了一个基于IEEE 802.11的WMSN数据链路层延迟模型,为实验提供理论依据.而后实验测量了基于IEEE 802.11的WMSN在不同网络拓扑下,不同因素(如距离、跳数、并发视频数)对视频评价指标(延迟、抖动、信道利用率)的影响.理论及实验结果表明,IEEE 802.11协议仅能支持四路以下视频并发传输,不适合高并发视频传输,亟待开展WMSN专属协议及算法的研究.
-
关键词:
- IEEE 802.11 /
- 无线多媒体传感器网络 /
- 并发视频传输 /
- 延迟
Abstract: Existing studies on wireless multimedia sensor networks (WMSNs) lack quantitative evaluations of concurrent video transmissions. In this study, we construct a model to analyze and validate the concurrent performance of the WMSN. First, in order to provide a theoretical basis for experiments, we construct a delay model on IEEE 802.11-based WMSN data link layer by utilizing queuing theory and probability theory. Then, the impacts of different factors (distance, hop count, and concurrent video count) on the video transmission quality (delay, jitter, and channel utilization) of the IEEE 802.11-based WMSN under different network topologies are measured. Theoretical and experimental results show that the IEEE 802.11 protocol can only support four concurrent video transmissions, which makes it unsuitable for high concurrent video transmissions. Therefore, specialized WMSN protocols and algorithms should be developed. -
-
[1] Yoon Y, Kim M, Lee S, et al. Performance analysis of H.264/AVC, H.264/SVC, and VP8 over IEEE 802.11 wireless networks[C]//IEEE Symposium on Computers and Communications. Piscataway, NJ, USA: IEEE, 2012: 151-156.
[2] Xiao Y, Zhang Y, Nolen M, et al. A cross-layer approach for prioritized frame transmissions of MPEG-4 over the IEEE 802.11 and IEEE 802.11e wireless local area networks[J]. Systems Journal IEEE, 2011, 5(4): 474-485.
[3] Gatimu K, Lee B, Lee T W, et al. Weighted nearest valid motion vector averaging for spatial motion vector recovery in wireless HD video transmission using H.264 over WLANs[C]//2013 Fourth International Conference on the Network of the Future (NOF). Piscataway, NJ, USA: IEEE, 2013: 1-6.
[4] Sendrei L, Valiska J, Marchevský S. H.264 video transmission over wlan in Opnetmodeller[J]. Journal of Electrical Engineering, 2013, 64(2): 112-117.
[5] Claudio D C M, Roberto D L G P. Improving video quality in 802.11 networks[C]//INFOCOM Workshops. Piscataway, NJ, USA: IEEE, 2009: 1-6.
[6] Li D, Pan J. Performance evaluation of video streaming over multi-hop wireless local area networks[J]. IEEE Transactions on Wireless Communications, 2010, 9(1): 338-347.
[7] Cocoradal S, Szekelyl I. Simulation-based performance analysis of multicast transmissions in an 802.11g WLAN[C]//International Symposium on Signals, Circuits and Systems. Piscataway, NJ, USA: IEEE, 2007: 1-4.
[8] Ennaji Y, Boulmalf M, Alaoui C. Experimental analysis of video performance over wireless local area networks[C]//International Conference on Multimedia Computing and Systems. Piscataway, NJ, USA: IEEE, 2009: 488-494.
[9] Hayajneh T, Al-Mashaqbeh G. Multimedia traffic over WLANs: QoS support and performance evaluation[C]//5th International Conference on Information and Communication Systems. Piscataway, NJ, USA: IEEE, 2014: 1-6.
[10] Kostuch A, Gierowski K, Wozniak J. Performance analysis of multicast video streaming in IEEE 802.11 b/g/n testbed environment[M]//Wireless and Mobile Networking. Berlin, Germany: Springer-Verlag, 2009: 92-105.
[11] Cranley N, Davis M. Performance evaluation of video streaming with background traffic over IEEE 802.11 WLAN networks[C]//Wireless Multimedia Networking and Performance Modeling. New York, NJ, USA: ACM, 2005: 131-139.
[12] Gierowski K, Kostuch A, Woz'niak J, et al. Testbed analysis of video and VoIP transmission performance in IEEE 802.11 b/g/n networks[J]. Telecommunication Systems, 2011, 48(3/4): 247-260.
[13] Adeyemi-Ejeye A O, Walker S D. Ultra-high definition Wireless Video transmission using H.264 over 802.11n WLAN: Challenges and performance evaluation[C]//12th International Conference on Telecommunications. Piscataway, NJ, USA: IEEE, 2013: 109-114.
[14] 陈亮, 顾翔. 基于混合流拥塞控制的Ad Hoc网络视频传输[J]. 信息与控制, 2015, 44(2): 135-141. Chen L, Gu X. Ad Hoc network video transmission based on hybrid flow congestion control[J]. Information and Control, 2015, 44(2): 135-141.
[15] Rehman S U, Turletti T, Dabbous W. Multicast video streaming over WiFi networks: Impact of multipath fading and interference[C]//IEEE Symposium on Computers & Communications. Piscataway, NJ, USA: IEEE, 2011: 37-42.
[16] 胡奇英. 随机运筹学[M]. 北京: 清华大学出版社, 2012: 5-28. Hu Q Y. Stochastic operations research[M]. Beijing: Tsinghua University Press, 2012: 5-28.
[17] Li Y, Wang C, Long K, et al. Modeling channel access delay and jitter of IEEE 802.11 DCF[J]. Wireless Personal Communications: An International Journal, 2008, 47(3): 417-440.
[18] Wu H, Peng Y, Long K, et al. Performance of reliable transport protocol over IEEE 802.11 wireless LAN: Analysis and enhancement[J]. Proceedings-IEEE INFOCOM, 2002, 2(2): 599-607.
[19] 毕经平, 吴起, 李忠诚. Internet中的包延迟分布与包丢失关系研究[J]. 计算机工程, 2002, 28(10): 20-22. Bi J P, Wu Q, Li Z C. Study on the relationship between packet delay distribution and packet loss on internet[J]. Computer Engineering, 2002, 28(10): 20-22.
计量
- 文章访问数: 464
- HTML全文浏览量: 4
- PDF下载量: 311