基于集成核局部保持投影算法的故障检测

Fault Detection Based on Ensemble Kernel Locality Preserving Projections

  • 摘要: 针对化工生产过程的非线性,为了解决核局部保持投影算法中核参数的选择问题,寻找适用于多个故障的核参数,提出了一种新的集成核局部保持投影算法(ensemble kernel locality preserving projections,EKLPP).首先选取一系列具有不同参数的核函数将非线性数据投影到高维空间,提取数据的非线性信息,得到投影矩阵A,建立一系列子KLPP模型;然后计算待检测数据的核矩阵并将其投影到矩阵A上,利用统计量得到各子模型的检测结果;利用贝叶斯决策将检测结果转化成发生故障概率的形式;最后利用集成学习法将检测结果进行组合,与控制限对比进行检测.将该方法应用于TE(Tennessee Eastman)过程,验证该方法可以有效检测非线性故障.

     

    Abstract: Given the nonlinearity of the chemical production process, to solve the selection of kernel parameter of kernel locality preserving projection algorithm and identify nuclear parameters that are suitable for multiple faults, we propose a new ensemble kernel locality preserving projection (KLPP) algorithm.First, we select a series of kernel functions with different parameters to project nonlinear data into a high-dimensional space for the extraction of nonlinear information of the data.The projection matrix A is obtained.A series of sub-KLPP models is established.Then, the kernel matrix of the data to be detected is calculated and then projected onto the matrix A.The detection results of each sub-model are obtained by statistics.Then, the detection results are transformed into the form of fault probability by using Bayesian decision.Finally, we use the ensemble learning method to combine the detection results.The final detection result is obtained by comparing the transformed result with the control limit.The method is applied to the Tennessee Eastman process and is proven to effectively detect nonlinear faults.

     

/

返回文章
返回