基于多策略混合人工鱼群算法的移动机器人路径规划

Path Planning for Mobile Robots Based on Multi-strategy Hybrid Artificial Fish Swarm Algorithm

  • 摘要: 针对移动机器人的路径规划问题,提出了一种基于多策略混合人工鱼群算法的路径规划方法(MH-AFSA).为了提高传统人工鱼群算法(AFSA)的收敛速度和全局搜索能力,引入多策略混合机制,利用加权平均距离策略,扩大了人工鱼的视野范围.采用对数函数作为步长的移动因子,克服了传统固定步长的缺陷.进一步利用高斯变异策略扩大了种群的多样性.通过经典函数优化和旅行商问题(TSP)测试了算法的性能.最后,建立移动机器人的环境模型,给出了基于多策略混合人工鱼群算法的移动机器人路径规划步骤.通过数值仿真说明了所提算法的优越性和有效性.

     

    Abstract: We propose a path planning method for mobile robots on the basis of multi-strategy hybridartificial fish swarm algorithm (MH-AFSA). We introduce a multi-strategy hybrid strategy to improve the convergence speed and global search ability of the traditional artificial fish swarm algorithm (AFSA). The vision of the artificial fish is enlarged by using the weighted average distance strategy. The log function is used as the step size factor, which overcomes the limitation of the traditional fixed step size. Gauss mutation strategy is used to expand the diversity of the population. The performance of the proposed MH-AFSA is tested by classical function optimization and the traveling salesman problem (TSP). The environment model of mobile robots is established, and the path planning method based on MH-AFSA is presented. Numerical simulations demonstrate the superiority and effectiveness of the proposed method.

     

/

返回文章
返回