模压时效炉锻件温度软测量方法

Temperature Soft Sensor Method for Molded Aging Ovens

  • 摘要: 针对模压时效炉锻件温度难以直接测量的问题,建立了基于混合核偏最小二乘(KPLS)算法的模压时效炉锻件温度软测量模型,通过采集较易获得的模压时效炉工作室炉壁温度估计锻件的实际温度.并采用局部加权算法确定训练样本权值,以提高软测量模型的精确度.实验结果表明,所建局部加权混合核偏最小二乘的软测量(LWKPLS)模型具有较好的数据适应性且能够满足实际温度预测的精度要求,解决了模压时效炉锻件温度难以直接测量导致铝合金产品欠温或过烧而带来的质量问题.

     

    Abstract: The forging temperature of a molded aging oven is difficult to measure directly. Thus, we build a temperature soft measurement model based on mixed kernel partial least squares algorithm (KPLS). The model estimates the actual forging temperature by collecting the furnace wall temperature, which is easy to obtain. To improve the accuracy of the model, we apply a local weighting algorithm to determine the weights of the training samples. Experimental results show that the soft measurement model of local weighted mixed-kernel partial least squares (LWKPLS) has better adaptability to data and meets the requirements of actual temperature prediction accuracy. It solves the quality problems of aluminum alloy products under oven burning temperature, thereby providing the basis for optimization control of the production process.

     

/

返回文章
返回