改进型社会蜘蛛优化算法

Modified Social Spider Optimization Algorithm

  • 摘要: 针对社会蜘蛛优化算法(social spider optimization algorithm,SSA)在寻优过程中步长固定且蜘蛛种群间因吸引力降低导致收敛速度慢且迭代后期计算精度低的缺陷,提出了一种改进型社会蜘蛛优化算法(modified social spider optimization algorithm,MSSA).算法采用自适应方法使寻优步长在迭代过程中自适应变化,提高了其收敛性能.引入偏好随机游动机制进一步强化算法的局部开发能力.典型函数的测试表明,MSSA的收敛性能较标准SSA及其它改进的群智能算法在收敛速度及精度方面具有明显优势.

     

    Abstract: Social spider optimization algorithm (SSA) is a new swarm intelligence algorithm inspired by the foraging behavior of social spiders. To address the slow convergence rate and low calculation accuracy in the later iterative period because of the fixed step size of the spiders and the decreasing attraction between each area, we propose a modified social spider optimization algorithm (MSSA). Adding the self-adaptive method ensures that the optimal step size can change adaptively in the iterative process, thereby improving the convergence. We apply the bias random walk (BRW) mechanism to strengthen the local search capability. Simulation results on some well-known benchmark functions show that MSSA has obvious advantages in terms of convergence rate and accuracy compared with SSA and other improved algorithms.

     

/

返回文章
返回