基于未知输入观测器的风力机传动机构传感器故障重构方法

Fault Reconstruction Method for Drive Train System Sensor Fault of Wind Turbine Using Unknown Input Observer

  • 摘要: 针对存在未知输入以及部分不可解耦干扰的风力机传动机构传感器故障的重构问题,提出了一种基于未知输入观测器(unknown input observer,UIO)的故障重构方法.与一般未知输入观测器相比,该方法考虑了实际工程中存在的干扰无法全部解耦的问题.首先,建立风力发电机传动机构传感器故障模型.然后,将原系统模型转化为增广系统形式,并将未知输入分为可解耦及不可解耦两个部分,针对这两个部分分别利用干扰解耦原理及LMI最优技术进行处理.最后用李亚普诺夫稳定性理论证明了未知输入观测器的稳定性以及动态故障偏差有界,解决了系统存在无法完全解耦干扰时的故障重构问题,并且对系统状态值也可完成有效估计.仿真验证该方法具有可行性.

     

    Abstract: For the sensor fault reconstruction of a wind turbine drive train system that includes unknown inputs and disturbances that cannot be decoupled, we propose a new unknown input observer (UIO) for fault reconstruction. Unlike the general UIO, this method solves the partial decoupling problem experienced by a wind turbine as a result of disturbances. First, we build the drive train sensor fault model of a wind turbine and then convert this system model to an augmented system. We divide the unknown input into two parts:the unknown inputs that can be decoupled are decoupled by the disturbance decoupling principle, and the disturbances that cannot be decoupled are attenuated by using LMI optimization. By using the Lyapunov stability theorem, we prove the stability of an unknown input observer and the ultimate boundedness of dynamic fault errors, and then achieve the estimation of system states and fault reconstruction, although some disturbances cannot be decoupled completely. Simulations are performed to demonstrate the effectiveness of the proposed algorithm.

     

/

返回文章
返回