基于投影梯度方法的鲁棒流形非负矩阵分解算法

Robust Nonnegative Matrix Factorization on Manifold via Projected Gradient Method

  • 摘要: 提出了一种基于投影梯度方法的鲁棒流形非负矩阵分解算法,该算法使用L21范数衡量矩阵分解的质量,因而对数据中的噪音和异常值不敏感,同时利用数据的几何结构并考虑局部不变性,将流形学习和非负矩阵分解算法相结合.分析了该算法的模型,并采用投影梯度方法得到该算法的更新规则,在若干个数据集上的实验结果及与其它非负矩阵分解算法和谱聚类算法的比较,证明了该算法的有效性.

     

    Abstract: We propose a robust nonnegative matrix factorization on manifold via projected gradient method. The proposed algorithm utilizes the L21 norm to measure the quality of factorization, which is insensitive to noise and outliers. The proposed algorithm also utilizes the geometrical structure of the dataset and considers the local invariance. Therefore, it combines manifold learning with the nonnegative matrix factorization. We utilize the projected gradient method to obtain updating rules. Experimental results on several datasets and comparisons with several other clustering algorithms demonstrate the effectiveness of the proposed algorithm.

     

/

返回文章
返回