不等长间歇过程的数据同步及递推优化

Data Synchronization and Recursive Optimization of Uneven-length Batch Processes

  • 摘要: 针对间歇过程优化中存在的批次数据不等长问题,提出了一种基于特征轨线的多阶段融合数据同步方法,进一步基于指标增量及载荷余弦相似度对操作曲线进行递推优化.首先通过主成分分析(PCA)将数据在时间维度的变化特征投影到得分空间,获得基于过程本质时间的特征变化轨迹;考虑到间歇过程的多阶段特性,应用K均值算法对数据进行阶段划分,根据各阶段数据的特征差异进行数据同步及融合,实现多阶段融合的批次数据同步;接着利用同步的批次数据,基于指标增量及载荷余弦相似度对操作曲线进行递推优化.最后将该方法应用到某化工产品的间歇结晶过程中,结果表明所提方法的有效性和优越性.

     

    Abstract: We propose a data synchronization approach based on the characteristic trajectory of multistage fusion to solve the problem of uneven-length data in batch process optimization, and then we optimize the operation trajectory recursively based on the index increment and the loading cosine similarity. In this method, we first use principal component analysis (PCA) to project the variation features of the data along the time dimension into a scoring space and obtain the characteristic trajectory variation based on the intrinsic time. Considering the multistage characteristics of batch processes, we apply the K-means algorithm to perform phase segmentation of the data, and synchronize and fuse the data based on the feature differences at each stage to realize batch data synchronization of the multistage fusion. Then, using the synchronized data, we optimize the operation trajectory recursively based on the index increment and the loading cosine similarity. We apply the proposed method to the batch crystallization process of a chemical product and found the simulation results to confirm its effectiveness and advantages.

     

/

返回文章
返回