基于形状上下文和方向梯度直方图特征的异源图像配准

Multi-sensor Image Registration Based on Shape Context and Histograms of Oriented Gradient Feature

  • 摘要: 针对单模态图像包含的信息存在局限性的问题,提出了一种基于形状上下文和HOG(histogram of oriented gradient)特征的红外和可见光图像配准方法.在混合高斯模型前景检测的基础上,通过提出的形状上下文和HOG特征结合的方法实现轮廓特征匹配,再利用TPS(thin plate spline)转换模型将匹配延伸到整个形状,并使用正则化和缩放特性迭代重组对应关系及估计转换降低估计误差.最后,采用RANSAC(random sample consensus)算法去除错误匹配点.与已有的形状上下文方法相比,此方法结合了边缘和轮廓特征信息,降低了误差,鲁棒性更好.

     

    Abstract: We propose a registration method for infrared and visible images based on shape context and histogram of oriented gradient (HOG) feature to overcome the limitations of single-mode image information. On the basis of foreground detection by Gaussian mixture model, we realize the contour feature matching using the proposed shape context and HOG feature. Matching is extended to the whole shape through a thin plate spline (TPS) transformation model. Then, we use the regularization and scaling characteristics to reorganize the corresponding relationship and estimate the transformation in order to reduce the estimation error. Finally, the random sample consensus (RANSAC) algorithm is used to remove the error matching points. Compared with existing shape context methods, this method combines edge and contour feature information with lower error and better robustness.

     

/

返回文章
返回