稀疏偏差补偿最小平均对数算法

Sparse Bias-compensated Least Mean Logarithmic Square Algorithm

  • 摘要: 针对最小平均对数(LMLS)算法在输入信号受噪声干扰的环境下进行稀疏系统辨识时存在精度低的问题,提出了一种稀疏偏差补偿LMLS算法.利用无偏准则推导偏差补偿项来修正输入噪声带来的偏差,构建偏差补偿LMLS.借助系统稀疏特性的先验知识,采用互相关熵诱导维度作为稀疏惩罚约束条件,优化偏差补偿LMLS算法.仿真结果表明,所提算法对于含噪输入信号下的稀疏系统参数辨识具有高稳态精度.

     

    Abstract: We propose a sparse bias-compensated least mean logarithmic square (LMLS) algorithm to solve the low precision problem of the LMLS algorithm in sparse system identification with noisy input. We derive the bias compensation term by using the unbiasedness criterion to compensate the bias caused by input noise, and construct a bias-compensated LMLS (BCLMLS). To fully utilize the prior knowledge on the sparse system, we introduce the correntropy-induced metric as a sparse penalty constraint to optimize the proposed BCLMLS algorithm. The simulation results demonstrate that the proposed algorithm has a good steady-state performance in solving sparse system identification problems with noisy inputs.

     

/

返回文章
返回