基于改进KPCA与混合核函数LSSVR的泥石流预测

A Debris Flow Prediction Model Based on the Improved KPCA and Mixed Kernel Function LSSVR

  • 摘要: 针对引发泥石流灾害的多重影响因素而导致的预测维数灾难,以及最小二乘支持向量回归(least squares support vector regression,LSSVR)模型中选取单核函数而导致的模型训练性能部分缺陷的问题,提出了一种基于改进的核主成分分析(kernel principal component analysis,KPCA)与混合核函数LSSVR的泥石流灾害预测方法.首先,将影响泥石流发生的7种初始因子赋予权重,利用加权KPCA法筛选出3个主成分影响因子作为模型输入;然后,将局部核函数与全局核函数相结合,运用到LSSVR模型上,进行泥石流发生概率预测,以平衡样本学习能力与泛化能力,并使用果蝇优化算法(fruit fly optimization algorithm,FOA)更新模型的最优参数;最后,以磨子沟监测数据进行仿真验证.结果表明,该方法能够有效地降低维数灾难并提升预测模型精确度,在误差允许范围内预测出泥石流发生概率值及对应的预警等级,为相关决策部门提供一定的借鉴经验.

     

    Abstract: In this study, we propose a debris flow prediction method based on the improved kernel principal component analysis (KPCA) and mixed kernel function least-squares support vector regression (LSSVR) to address the curse of prediction dimensionality when considering the multiple factors that influence the debris flow disaster and to tackle the problem of partial defects of model training performance caused by the selection of a single kernel function in the LSSVR model. First, we weight seven initial factors affecting the debris flow and select three principal-component-influencing factors as model inputs using the weighted KPCA method. Second, we use the LSSVR model by combining the local kernel function with the global kernel function to predict the debris flow probability and for balancing the learning ability and generalization ability of the samples. Third, we use the fruit fly optimization algorithm to obtain the optimal parameters of the model. Finally, we conducted a simulation experiment based on the monitoring data of a mill groove. The results denote that the proposed method can effectively reduce the curse of dimensionality and improve the accuracy of the prediction model. The probability value of debris flow within the allowable error and the corresponding warning level are predicted, which can provide certain reference for the relevant decision-making departments.

     

/

返回文章
返回