基于DOB的多变量非最小状态空间预测控制

Multivariable Non-minimum State Space Predictive Control Based on the Disturbance Observer

  • 摘要: 为了抑制集总干扰(外部扰动及模型失配、变量间耦合导致的内部扰动)对系统的影响,以往的方法通常采用反馈+前馈补偿的控制方式,不能保证系统控制输出最优.为此,本文提出了一种基于扰动观测器的多变量非最小状态空间预测控制方法(disturbance observer-based multivariable non-minimum state space predictive control,D-MNMSSPC).本方法首先通过扰动观测器(disturbance observer,DOB)估计集总干扰,然后将扰动的估计值及输出变量同时引入到状态变量中形成复合多变量非最小状态空间(multivariable non-minimum state space,MNMSS)预测模型,该模型可以避免状态观测器的设计,减小了设计负担,并且可以保证扰动直接参与预测控制滚动优化,从而获得系统的最优控制性能,仿真结果验证了D-MNMSSPC方法的有效性.

     

    Abstract: To suppress the effect of lumped disturbances (i. e., external and internal disturbances caused by model mismatch and coupling among variables), the existing methods are usually based on feedback control and feedforward compensation, which cannot guarantee the optimal output of the system. A disturbance-observer-based multivariable non-minimum state space predictive control (D-MNMSSPC) method is proposed in this study. In this method, first, lumped disturbances are estimated by the disturbance observer. Then, the estimated disturbance and output variables are simultaneously introduced into the state variables to form a composite multivariable non-minimum state space prediction model, which can avoid the design of a state observer and reduce the burden of design. Furthermore, the disturbance is directly involved in rolling optimization of predictive control to obtain the optimal control performance of the system. The simulation results verify the validity of the D-MNMSSPC method.

     

/

返回文章
返回