基于改进局部线性模型树的航空发动机过渡态非线性辨识

Nonlinear Identification for Aero-engine Transient Process Based on Modified Local Linear Model Tree

  • 摘要: 为了解决在采用局部线性模型树(LOcal Linear MOdel Tree,LOLIMOT)辨识发动机非线性系统时,出现的辨识网络复杂和模型精度问题,提出一种将非线性自回归滑动平均模型(NARMAX)和LOLIMOT网络融合的改进神经网络结构.基于非线性自回归滑动平均模型NARMAX的思想,将原始局部子模型的线性函数替换为非线性多项式函数,并基于AIC(Akaike information criterion)显著性准则的前向选择法对非线性项按照重要性程度进行选择,将简化后的非线性函数用于构建原始LOLIMOT模型局部子模型,形成一种改进LOLIMOT网络模型.通过某航空发动机过渡态下的辨识实验表明,改进算法能够将原LOLIMOT模型复杂度降低46%左右,相对预测精度提高50%以上,验证了在对发动机模型复杂度和精度要求较高的领域,改进模型是一种更加有效的网络结构.

     

    Abstract: To solve the problems associated with complex network structures and low model accuracy when using the local linear model tree (LOLIMOT) to identify nonlinear engine systems, we propose a modified LOLIMOT structure that combines a nonlinear autoregressive moving average model (NARMAX) with a LOLIMOT network. Based on the concepts underlying NARMAX, we replace the linear function of the local sub-model with a nonlinear polynomial function. Using a forward selection method based on the AIC saliency criterion, we then select the appropriate nonlinear terms according to their importance, and use the simplified nonlinear function to construct the local sub-model of LOLIMOT, which yields a modified LOLIMOT. We then use the modified LOLIMOT to identify a nonlinear transient process for an aero-engine. The results show that the modified LOLIMOT reduces the complexity of the original model by 46% and increases the prediction accuracy by at least 50%. These results verify that the modified model has a more efficient network structure in the aero-engine control field, low model complexity, and the ability to meet the demand for high accuracy.

     

/

返回文章
返回