联合特征增强和网络参数优化的人脸识别方法

Method of Combined Feature Enhancement and Network Parameter Optimization for Face Recognition

  • 摘要: 针对(2D)2PCA(two-dimensional principal component analysis)提取的特征脸精度变低的问题,本文引入插值法在特征向量之间插入新的向量,以提高特征信息的显示度;针对传统的神经网络存在学习效率低、收敛速度慢和容易陷入局部极小值的问题,本文使用一种基于权值缓慢变化的粒子群算法(particle swarm optimization with slowly changing weights,WSCPSO)优化神经网络权值.实验表明:两种算法的结合能够大大地提高识别率.

     

    Abstract: To solve the problem of the low accuracy of face features extracted by two-dimensional principal component analysis ((2D)2PCA), we introduce an interpolation method for inserting new vectors between feature vectors to improve the display of feature information. To optimize the weights of neural networks, we use a particle swarm optimization algorithm with slowly changing weights. Experimental results show that the combination of these two algorithms can greatly improve the recognition rate.

     

/

返回文章
返回