Design and Simulation on the Actuator of Soft Massage Robot
-
摘要:
为了使软体按摩机器人满足所需要的输出力要求,基于象鼻类生物结构的启发提出了一种可满足按摩输出力的软体驱动器.软体驱动器输出力主要由驱动器长度、直径和材料属性等8个内部因素及纤维线材料属性、缠绕圈数和初始编制角等4个外部因素决定.根据Hagen-Poiseuille定律分析了压强、腔室直径和驱动器长度之间的关系.通过对驱动器内部纤维线缠绕方式的讨论确定了限制其径向变形的方法.利用驱动器变形后的几何方程和力矩平衡方程建立了驱动器输出力理论模型.基于理论模型和Abaqus仿真软件生成的仿真模型进行对比分析从而确定驱动器结构最优参数.实验结果表明在最优参数的基础上,气压低于6 kPa时,实验结果与理论模型有较好的一致性,验证了理论模型的正确性.
Abstract:A software actuator that can meet the output force of message is proposed on the basis of the biological structure of an elephant's nose to satisfy the output force equipment of a massage robot. The output force of the soft actuator is mainly determined by eight internal factors, such as the length, diameter, and material properties of the actuator, and four external factors, such as the fiber wire material, the number of winding loops of the fiber wire, and the initial braiding angle. According to Hagen-Poiseuille's law, the relationship among pressure, cavity diameter, and actuator length is analyzed. The method of limiting the radial deformation is determined by discussing the winding ways of the fiber wire inside the actuator. The theoretical model of the actuator's output force is established by using the geometric equation and the moment balance equation after the actuator deforms. The optimal parameters of the actuator structure are determined on the basis of the theoretical model and the simulation model generated by the Abaqus simulation software. When the pressure is lower than 6 kPa, the experimental results are in good agreement with the theoretical model under the optimal parameters. Therefore, the theoretical model is accurate.
-
Keywords:
- soft actuator /
- output force /
- Abaqus simulation /
- moment balance equation
-
-
表 1 驱动器结构最优尺寸
Table 1 The optimal measurement of actuator structure
参数 数值 D/mm 60 D1/mm 20 h1/mm 15 D2/mm 20 L/mm 110 Θ/(°) 89.3 N/圈 50 -
[1] 陈艳玫, 刘子锋, 李贤德, 等. 2015-2050年中国人口老龄化趋势与老年人口预测[J]. 中国社会医学杂志, 2018, 35(5): 480-483. doi: 10.3969/j.issn.1673-5625.2018.05.013 Chen Y M, Liu Z F, Li X D, et al. The aging trend of Chinese population and the prediction of aging population in 2015-2050[J]. Chinese Journal of Social Medicine, 2018, 35(5): 480-483. doi: 10.3969/j.issn.1673-5625.2018.05.013
[2] 李晨阳, 石陨. 浅析颈椎病的危险因素[J]. 中华针灸电子杂志, 2020, 9(3): 128-130. doi: 10.3877/cma.j.issn.2095-3240.2020.03.014 Li C Y, Shi Y. Analysis of risk factors of cervical spondylosis[J]. Chinese Journal of Acupuncture and Moxibustion, 2020, 9(3): 128-130. doi: 10.3877/cma.j.issn.2095-3240.2020.03.014
[3] 苑峥. 浅谈按摩的原理和功效[J]. 内蒙古中医药, 2012, 31(20): 117. doi: 10.3969/j.issn.1006-0979.2012.20.130 Yuan Z. Analysis of principles and effects of massage[J]. Nei Mongol Journal of Traditional Ghlnese Medicine, 2012, 31(20): 117. doi: 10.3969/j.issn.1006-0979.2012.20.130
[4] 高焕兵, 鲁守银, 王涛, 等. 中医按摩机器人研制与开发[J]. 机器人, 2011, 33(5): 553-562. https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201105008.htm Gao H B, Lu S Y, Wang T, et al. Research and development of Chinese medical massage robot[J]. Robot, 2011, 33(5): 553-562. https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201105008.htm
[5] Solis J, Obokawa Y, Ishii H, et al. Development of oral rehabilitation robot WAO-1R designed to provide various massagetechniques[C]//The 11th IEEE International Conference on Rehabilitation Robotics. Piscataway, USA: IEEE, 2009: 457-462.
[6] Kang C G, Lee B J, Son L X, et al. Design of a percussive massage robot tapping human backs[C]//The 16th IEEE International Symposium on Robot and Human Interactive Communication. Piscataway, USA: IEEE, 2007: 962-967.
[7] Guo W W, Lei R, Jian S, et al. Prehension of an anthropomorphic metamorphic robotic hand based on opposite on space model[C]//10th International Conference on Intelligent Robotics and Applications. Berlin, Germany: Springer, 2017: 71-83.
[8] 刘玲云, 鲁守银, 张营, 等. 中医按摩机器人专家控制系统的研究[J]. 计算机测量与控制, 2016, 24(4): 55-57. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201604017.htm Liu L Y, Lu S Y, Zhang Y, et al. Research on expert control system of Chinese medicine massage robot[J]. Computer Measurement and Control, 2016, 24(4): 55-57. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201604017.htm
[9] 李云江, 焦成彬. 按摩机器人捏拿机构的优化设计[J]. 机械, 2016, 43(1): 40-42. https://www.cnki.com.cn/Article/CJFDTOTAL-MECH201601012.htm Li Y J, Jiao C B. Take knead mechanical optimal design of massage robot[J]. Mechanical, 2016, 43(1): 40-42. https://www.cnki.com.cn/Article/CJFDTOTAL-MECH201601012.htm
[10] 陈俊, 王殊轶, 汪鹏, 等. 中医推拿机器人设计与研究[J]. 生物医学工程学进展, 2019, 40(4): 190-195. doi: 10.3969/j.issn.1674-1242.2019.04.002 Chen J, Wang S Y, Wang P, et al. Design and research of Chinese massage robot[J]. Progress in Biomedical Engineering, 2019, 40(4): 190-195. doi: 10.3969/j.issn.1674-1242.2019.04.002
[11] 鲁守银, 李臣. 中医按摩机器人关键技术研究进展[J]. 山东建筑大学学报, 2017, 32(1): 60-68. doi: 10.3969/j.issn.1673-7644.2017.01.010 Lu S Y, Li C. Research progress of key technology of Chinese medical massage robot[J]. Journal of Shandong Jianzhu University, 2017, 32(1): 60-68. doi: 10.3969/j.issn.1673-7644.2017.01.010
[12] 张濛. 捏拿式颈椎肩部按摩器三维设计研究[D]. 马鞍山: 安徽工业大学, 2019. Zhang M. Three-dimensional design of pinching cervical shoulder massager[D]. Maanshan: Anhui University of Technology, 2019.
[13] Kohei N, Helmut H, Kang R, et al. A soft body as a reservoir case studies in a dynamic model of octopus inspired soft robotic arm[J]. Frontiers in Computational Neuroscience, 2013, 7: 1-19. http://europepmc.org/articles/PMC3705147/
[14] 唐子临, 汪海洋, 张红柯, 等. 被动轮式蛇形机器人前进速度的实验探究[J]. 现代制造技术与装备, 2020, 283(6): 86-89. doi: 10.3969/j.issn.1673-5587.2020.06.032 Tang Z L, Wang H Y, Zhang H K, et al. Experimental research on the advance speed of passive wheeled snake robot[J]. Modern Manufacturing Technology Equipment, 2020, 283(6): 86-89. doi: 10.3969/j.issn.1673-5587.2020.06.032
[15] 田加文, 王田苗, 史震云, 等. 仿象鼻机械臂的运动学分析及实验[J]. 机器人, 2017, 39(5): 585-594. https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201705001.htm Tian J W, Wang T M, Shi Z Y, et al. Kinematic analysis and experiment of an elephant-trunk-like Robot arm[J]. Robot, 2017, 39(5): 585-594. https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201705001.htm
[16] 高伟贤, 王虹玲. 仿生机器人的研究进程与发展前景研究[J]. 黑龙江科学, 2018, 9(1): 26-27. doi: 10.3969/j.issn.1674-8646.2018.01.009 Gao W X, Wang H L. Research progress and development prospect of bionic robot[J]. Heilongjiang Science, 2018, 9(1): 26-27. doi: 10.3969/j.issn.1674-8646.2018.01.009
[17] 李卓雨. 软体机器人的发展应用与展望[J]. 科技传播, 2018, 10(23): 109-110. doi: 10.3969/j.issn.1674-6708.2018.23.065 Li Z Y. Development application and prospect of software robot[J]. Technology Communication, 2018, 10(23): 109-110. doi: 10.3969/j.issn.1674-6708.2018.23.065
[18] 李海利, 姚建涛, 周盼, 等. 无系留大负载软体抓持机器人研究发展综述[J]. 机械工程学报, 2020, 56(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202019004.htm Li H L, Yao J T, Zhou P, et al. Untethered, high-load soft gripping robots: A review[J]. Journal of Mechanical Engineering, 2020, 56(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202019004.htm
[19] Tong M L. Design, modeling, and fabrication of a message neck support using soft robot mechanism[D]. Columbus, USA: The Ohio State University, 2014.
[20] 王豪倩, 史银豪, 赵田, 等. 颈部按摩减压器开发设计[J]. 智库时代, 2019, 19(2): 236-240. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKSD201919151.htm Wang H Q, Shi Y H, Zhao T, et al. Development and design of neck massage decompression apparatus[J]. Think Tank Era, 2019, 19(2): 236-240. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKSD201919151.htm
[21] Sun Y, Song Y S, Paik J. Characterization of silicone rubber based soft pneumatic actuators[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2013: 4446-4453.
[22] Polygerinos P, Lyne S, Wang Z, et al. Towards a soft pneumatic glove for hand rehabilitation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2013: 1512-1517.
[23] 许宗贵, 方醒, 陈凌峰, 等. 一种仿生软体驱动器的设计与弯曲建模研究[J]. 机电工程, 2018, 35(11): 1190-1194. doi: 10.3969/j.issn.1001-4551.2018.11.009 Xu Z G, Fang X, Cheng L F, et al. Structure and bending model of a biomimetic soft actuator[J]. Mechanical & Electrical Engineering Magazine, 2018, 35(11): 1190-1194. doi: 10.3969/j.issn.1001-4551.2018.11.009
[24] 魏树军. 基于气动驱动器软体操作手的设计与控制[D]. 上海: 上海交通大学, 2018. Wei S J. Design and control of soft manipulators based on pneumatic actuators[D]. Shanghai: Shanghai Jiaotong University, 2018.
[25] Wang B, McDaid A, Biglari-Abhari M, et al. A bimorph pneumatic bending actuator by control of fiber braiding angle[J]. Sensors and Actuators Physical, 2017, 257(15): 173-184. http://www.sciencedirect.com/science/article/pii/S0924424716305386
[26] Mosadegh B, Polygerinos P, Keplinger C, et al. Pneumatic networks for soft robotics that actuate rapidly[J]. Advanced Functional Materials, 2014, 24(15): 2163-2170. doi: 10.1002/adfm.201470092
[27] Polygerinos P, Wang Z, Overvelde J, et al. Modeling of soft fiber-reinforced bending actuators[J]. IEEE Transactions on Robotics, 2015, 31(3): 778-789. doi: 10.1109/TRO.2015.2428504
[28] Xu Z G, Yao P F, Cai S B, et al. Modeling and experimental research on bending and wrinkling of long-arm biosoft robot[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA: IEEE, 2017: 842-847.
[29] 李朋波. 柔性驱动软体按摩机器人设计与实验研究[D]. 秦皇岛: 燕山大学, 2019. Li P B. Design and experimental research of flexible actuator soft message robot[D]. Qinhuangdao: Yanshan University, 2019.
[30] 江泽旗. 腰背部压痛点的手法治疗[J]. 中国运动医学杂志, 1993, 10(4): 246-247. https://www.cnki.com.cn/Article/CJFDTOTAL-YDYX199304019.htm Jiang Z Q. Manipulative treatment of tenderness points in the lower back[J]. Chinese Journal of Sports Medicine, 1993, 10(4): 246-247. https://www.cnki.com.cn/Article/CJFDTOTAL-YDYX199304019.htm