一种基于行为空间的回声状态网络参数优化方法

An Echo State Network Parameter Optimization Method Based on Behavior Space

  • 摘要: 针对回声状态网络参数难以选择的问题,提出一种基于行为空间优化回声状态网络参数的方法.其实质是通过泛化等级、核心等级、记忆容量构建回声状态网络行为空间.优化算法采用新颖搜索遗传算法(NSGA),该算法结合K近邻个体距离和NMSE,通过建立行为空间最低配置筛选基因来限定遗传算法的遗传方向,提高优化效率,进而找到影响网络性能的因素.该方法克服了传统回声状态网络(ESN)参数选择困难、遗传算法优化时间长且无合适理论阐明储层性能对任务的影响等缺陷,提升了优化效率和网络学习性能.实验结果表明,本文所提NSGA-ESN方法优化ESN参数基本上接近最佳网络结构,学习性能优于增长回声状态网络,且可以通过行为空间解释影响ESN网络性能的原因.

     

    Abstract: Aiming to solve the problem of selecting echo state network parameters, a method for optimizing echo state network (ESN) parameters based on the behavior space is proposed. The essence is to construct ESN behavior space through generalization rank, kernel rank, and memory capacity. The optimization algorithm adopted the novel search genetic algorithm (NSGA), which combines the K-nearest neighbor individual distance and normalized mean squared error, limits the genetic direction of the genetic algorithm by establishing the minimum configuration of the behavior space to screen genes, therefore improves the optimization efficiency. Next, the factors that affect network performance were determined. This method overcomes traditional ESN parameter selection difficulties, the long optimization time of the genetic algorithm, and no suitable theory to clarify the impact of reservoir performance on tasks. As a result, it improved the optimization efficiency and network learning performance. The experimental results showed that the proposed NSGA-ESN method optimizes ESN parameters close to the best network structure, with a better learning performance compared to the growing echo state network. Furthermore, the factors that affect the performance of the ESN network can be explained through the behavior space.

     

/

返回文章
返回