基于优化的多核局部费舍尔判别分析的故障分类

Fault Classification Based on Optimized Multi-kernel Local Fisher Discriminant Analysis

  • 摘要: 在实际工业过程中,故障数据通常具有较强的非线性特征,并且非线性特征的种类也较为多样.现有的基于核策略的过程监测方法中,通常只使用一种核函数进行故障的非线性特征提取,很难对非线性特征进行较为全面地刻画,因此单种核函数的过程监测方法对不同故障的分类效果十分有限.此外,常规核方法中的核参数通常由经验确定,难以取得最优的特征提取结果.为了解决此问题,本文提出一种优化的多核局部费舍尔判别分析(OMKLFDA)模型,首先,通过权重系数将多个核函数集成至局部费舍尔判别分析(LFDA)模型中,从而能够提取故障的多种非线性特征.其次,通过改进的粒子群优化算法为故障分类模型选择最优的核参数和权重系数,使得模型能够自适应地匹配不同的故障非线性特征.最后,田纳西—伊斯曼(TE)过程和真实柴油机运行过程中的仿真实验结果验证本文所提方法具有更好的故障分类效果.

     

    Abstract: In actual industrial processes, fault data usually exhibit strong nonlinear characteristics, and the types of nonlinear characteristics are diverse. Existing kernel strategy-based process monitoring methods usually employ a single kernel function to extract the nonlinear characteristics of a fault, but comprehensively describing nonlinear characteristics is difficult. Therefore, the classification effect of single kernel-function-based monitoring methods for different faults is limited. In addition, the kernel parameters in the common kernel method are usually determined by experience. Obtaining the optimal result of feature extraction is also difficult. In this study, an optimized multi-kernel local Fisher discriminant analysis (OMKLFDA) model is proposed to solve this problem. First, multiple kernel functions are integrated into a local Fisher discriminant analysis (LFDA) model through weight coefficients so that the multiple nonlinear characteristics of the fault can be extracted. Second, an improved particle swarm optimization algorithm is utilized to select the optimal kernel parameters and weight coefficients for the fault classification model. In this way, the model can adaptively match the nonlinear characteristics of different faults. Finally, simulation results on the Tennessee-Eastman process and real-world diesel working process verify that the proposed method has an enhanced fault classification performance.

     

/

返回文章
返回