基于柔性人机接口的人机协调运动控制方法

Control Method of Human-robot Coordinated Motion Based on Flexible Human-robot Interface

  • 摘要: 为改善基于力信息的人机协调运动中人机交互力,采用了在人机接口中设置弹性元件的方法,建立了具有柔性人机接口的人机交互力学模型。在已有鲁棒自适应阻抗控制方法的基础上进行改进,提出了一种基于柔性人机接口的自适应阻抗控制方法。此控制方法是对阻抗外环位置速度进行比例补偿,对力控制内环采用模糊PID(proportion integral differential)控制,实现改进自适应阻抗算法,从而提高了位置跟随精度,并有效减小了人机交互力。分析了人机接口中弹性元件对控制效果的影响,获得了不同刚度系数时,交互力控制效果和位置跟随精度。在此基础上,建立了试验系统,完成了试验。人机协调运动试验结果显示:应用柔性人机接口和改进后的控制方法具有更好的人机交互力控制效果。标准运动输入试验结果显示:改进后的控制方法具有更好的人机交互力控制效果和更高的位置跟随精度;人机交互力大小、位置跟踪准确性与人机接口刚度系数大小均成正比。

     

    Abstract: To improve human-robot interaction force in human-robot coordinated motion based on force information, the method of setting elastic elements in the human-machine interface is adopted, and a human-robot interaction mechanics model with a flexible human-robot interface is developed. An adaptive impedance control method based on a flexible human-robot interface is proposed based on the existing robust adaptive impedance control method. This control method performs proportional compensation on the position and speed of the outer impedance loop and uses fuzzy PID control for the inner loop of the force control to achieve an improved adaptive impedance algorithm, thereby improving the position tracking accuracy and effectively reducing the human-robot interaction force. The influence of the elastic elements on the human-robot interface and its control effect are analyzed. When different stiffness coefficients are obtained, the interactive force control effect and location tracking accuracy are obtained. On this basis, a test system is established and completed. The human-robot coordinated motion test results show that the application of flexible human-robot interface and improved control method has a better human-robot interaction control effect. Standard motion input test results show that the improved control method has a better human-robot interaction force control effect and higher position tracking accuracy. The magnitude of the human-robot interaction force and position tracking accuracy are proportional to the stiffness coefficient of the human-robot interface.

     

/

返回文章
返回