一阶线性自抗扰控制的整定

Tuning of First-order Linear Active Disturbance Rejection Control

  • 摘要: 线性自抗扰控制(linear active disturbance rejection control,LADRC)是解决系统外部不可测扰动和内部未知不确定性的一种新型控制方法。其精髓是将系统的不确定性转化为一个可观测的状态,利用扩张状态观测器进行实时估计,并用状态反馈控制率实时进行补偿。在满足鲁棒度策略和时间乘平方误差积分的约束条件下,首先针对一阶惯性加迟延模型提出了一阶LADRC的整定公式,然后通过典型的基准系统和温度控制实验,对整定公式进行测试,最后与常规的SIMC(simplified internal model control)-PI(proportional-integral)整定方法进行性能比较。仿真结果证明了该一阶LADRC整定公式的可行性,拓展了其在工业控制领域的应用。

     

    Abstract: Linear active disturbance rejection control (LADRC) is a new control method used to handle a system's external unmeasured disturbance and internal unknown uncertainty. Its essence is to transform the uncertainty of a system into an observable state and utilize the extended-state observer to estimate in real time and compensate it using a state-feedback control law. In this paper, under the constraints of a specified robustness measure and the integral time squared error, a tuning formula of the first-order LADRC is proposed for the first-order process with the dead time model. Then, the tuning formula is tested for a variety of benchmark systems and a temperature control experiment. Finally, the performances are compared with the conventional simplified internal model control-PI tuning method. The simulation results verify the feasibility of the first-order LADRC tuning formula and expand the formula's application in the field of industrial control.

     

/

返回文章
返回