稀疏-平坦矩阵信号的重构条件

田园, 黄鑫, 李明楚

田园, 黄鑫, 李明楚. 稀疏-平坦矩阵信号的重构条件[J]. 信息与控制, 2022, 51(5): 554-565. DOI: 10.13976/j.cnki.xk.2022.1387
引用本文: 田园, 黄鑫, 李明楚. 稀疏-平坦矩阵信号的重构条件[J]. 信息与控制, 2022, 51(5): 554-565. DOI: 10.13976/j.cnki.xk.2022.1387
TIAN Yuan, HUANG Xin, LI Mingchu. Conditions for Reconstructing Sparse-Flat Matrix Signals[J]. INFORMATION AND CONTROL, 2022, 51(5): 554-565. DOI: 10.13976/j.cnki.xk.2022.1387
Citation: TIAN Yuan, HUANG Xin, LI Mingchu. Conditions for Reconstructing Sparse-Flat Matrix Signals[J]. INFORMATION AND CONTROL, 2022, 51(5): 554-565. DOI: 10.13976/j.cnki.xk.2022.1387
田园, 黄鑫, 李明楚. 稀疏-平坦矩阵信号的重构条件[J]. 信息与控制, 2022, 51(5): 554-565. CSTR: 32166.14.xk.2022.1387
引用本文: 田园, 黄鑫, 李明楚. 稀疏-平坦矩阵信号的重构条件[J]. 信息与控制, 2022, 51(5): 554-565. CSTR: 32166.14.xk.2022.1387
TIAN Yuan, HUANG Xin, LI Mingchu. Conditions for Reconstructing Sparse-Flat Matrix Signals[J]. INFORMATION AND CONTROL, 2022, 51(5): 554-565. CSTR: 32166.14.xk.2022.1387
Citation: TIAN Yuan, HUANG Xin, LI Mingchu. Conditions for Reconstructing Sparse-Flat Matrix Signals[J]. INFORMATION AND CONTROL, 2022, 51(5): 554-565. CSTR: 32166.14.xk.2022.1387

稀疏-平坦矩阵信号的重构条件

基金项目: 

国家自然科学基金 61877007

详细信息
    作者简介:

    田园(1966-), 男, 博士, 教授。研究领域为信号处理, 信息论和非线性控制

    黄鑫(1999-), 男, 硕士生。研究领域为信号处理和大数据分析

    李明楚(1962-), 男, 博士, 教授。研究领域为信息安全及智能大数据分析

    通讯作者:

    田园,tianyuan_ca@dlut.edu.cn

  • 中图分类号: TP18

Conditions for Reconstructing Sparse-Flat Matrix Signals

  • 摘要:

    建立基于凸优化方法重构矩阵信号X=[x1,…,xn]的一组充分条件,X具有列稀疏性和平坦性的结构特征,即每个列向量xj至多具有s个非零分量、同时所有列向量的l1范数具有相同数值。所采用的矩阵范数是‖|X|‖1≡maxj|xj|1。工作分两部分,第一部分分别对无观测误差和有观测误差的情况,针对求解min-‖|·|‖1型凸优化问题重构以上类型矩阵信号的方法,建立保障稳定性和鲁棒性的充分条件;第二部分工作建立随机观测情况下观测空间维数的下界,用以保证信号以高概率被正确重构。所得结果优于将重构向量信号的min-l1方法直接推广到针对矩阵信号的min-l1方法所得到的结果,并给出数值仿真验证。所针对的信号模型出现在具有定常或缓变包络波形的多输入/多输出雷达及合成孔径雷达等新应用领域,本文工作针对这类应用提供一组实用的信号重构条件。

    Abstract:

    In this study, a group of sufficient conditions is established for reconstructing the structured matrix signal X=[x1, …, xn] with the column-wise sparsity and flatness features via convex programming, where each column xj is a vector of s-sparsity and all columns have the same value of l1 norms. The regularizer in use is a matrix norm ‖|X|‖1≡maxj|xj|1. The contributions have two parts: First, sufficient conditions are established for stability and robustness in signal reconstruction by solving the min-‖|·|‖1 convex program from noise-free or noisy measurements. Second, fundamental lower bounds on the dimensions of the measurement space are established for correct reconstruction with high probability. The results are superior to those obtained by directly extending the vector signal's min-l1 approach to the matrix signal's min-l1 approach. Numerical simulations are presented. The investigated signal model appears in some emerging application fields, e.g., multiple-input and multiple-output and synthetic aperture radars with constant or slowly varying envelope waveforms. The work in this paper provides practical conditions to reconstruct such signals.

  • 图  1   min-‖|·‖|1成功重构信号的概率与观测维数m的关系

    Figure  1.   Relationship between measurement dimensions m and success probability of reconstruction via min-‖|· ‖|1

    图  2   min-l1成功重构信号的概率与观测维数m的关系

    Figure  2.   Relationship between measurement dimensions m and success probability of reconstruction via min-l1

    图  3   min-‖|· ‖|1重构非平坦信号的概率与观测维数m的关系

    Figure  3.   Relationship between measurement dimensions m and success probability of reconstructing non-flat signals via min-‖|· ‖|1

  • [1]

    Foucart F, Rauhut H. A mathematical introduction to compressive sensing[M]. 2nd ed. Berlin, Germany: Birkhaeusser, 2019.

    [2]

    Eldar Y C. Sampling theory: Beyond bandlimited systems[M]. Cambridge, UK: Cambridge University Press, 2015.

    [3] 丛爽, 张娇娇. 压缩传感理论、优化算法及其在系统状态重构中的应用[J]. 信息与控制, 2017, 46(3): 267-274. doi: 10.13976/j.cnki.xk.2017.0267

    Cong S, Zhang J J. Compressive sensing theory, optimization algorithm and application in system state reconstruction[J]. Information and Control, 2017, 46(3): 267-274. doi: 10.13976/j.cnki.xk.2017.0267

    [4]

    Cohen D, Eldar Y C. Sub-Nyquist radar systems: Temporal, spectral and spatial compression[J]. IEEE Signal Processing Magazine, 2018, 11(2): 35-57.

    [5]

    Kannan R, Shake N, Berman A. Properties of strong-tensors and general-tensors[J]. Linear Algebra and Its Applications, 2017, 455(1): 133-166.

    [6]

    Duarte M F, Baraniuk R G. Kronecker compressive sensing[J]. IEEE Transactions on Image Processing, 2012, 21(2): 494-504. doi: 10.1109/TIP.2011.2165289

    [7]

    Dai W, Li Y, Zou J. et al. Fully decomposable compressive sampling with optimization for multidimensional sparse representation[J]. IEEE Transactions on Signal Processing, 2018, 66(3): 603-616. doi: 10.1109/TSP.2017.2773427

    [8]

    Heckel R, Morgemshtern V, Soltanolkotabi M. Super-resolution radar[J]. Information and Inference, 2016, 5(1): 22-75. doi: 10.1093/imaiai/iaw001

    [9]

    Dorsch D, Rauhut H. Refined analysis of sparse MIMO radar[J]. Journal of Fourier Analysis and Applications, 2017, 23(6): 1120-1152.

    [10]

    Aubel C, Stotz D, Boelcskei H. Super-resolution from short-time Fourier transform measurements[J]. Journal of Fourier Analysis and Applications, 2018, 24(1): 22-35.

    [11]

    Khwaja A S, Onhon N O, Cetin M. Compressed sensing methods for radar imaging in the presence of phase errors and moving objects[M]. Cambridge, UK: Cambridge University Press, 2020.

    [12]

    Davenport M A, Romberg J. An overview of low-rank matrix recovery from incomplete observations[J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(4): 592-625.

    [13]

    Tropp J A, Yurtsever A, Udell S. Practical sketching algorithms for low rank matrix approximation[J]. SIAM Journal of Matrix Analysis and Applications, 2017, 38(4): 1454-1485. doi: 10.1137/17M1111590

    [14]

    Aldroubi P, Cabrelli R, Jaffard S. New trends in applied harmonic analysis: Sparse representation, compressed sensing and multifractal analysis[M]. Archen, Germany: SciTech Publishing, 2019.

    [15]

    Cohen R, Eldar Y C. Sparse Doppler sensing based on nested arrays[J]. IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, 2018, 65(12): 2349-2364. doi: 10.1109/TUFFC.2018.2872870

    [16]

    Agrawal A, Barrat S, Boyd S. Learning convex optimization models[J]. IEEE Journal of Automatica Sinica, 2021, 8(8): 1355-1364. doi: 10.1109/JAS.2021.1004075

    [17]

    Chandrasekaran V, Recht B, Parrio P A, et al. The convex geometry of linear inverse problems[J]. Foundations of Computing Mathematics, 2012, 12: 805-849. doi: 10.1007/s10208-012-9135-7

    [18]

    Tropp J A. Convex recovery of a structured signal from independent random linear measurements[M]//Sampling theory: A Renaissance in Compressive Sampling and Other Developments. Bassel, Germany: Birkhaeusser, 2016.

    [19]

    Mendelson S. Learning without concentration for general loss functions[J]. Probability Theory and Related Fields, 2018, 71(2): 459-502.

    [20]

    Vatier S, Peyre G, Dadili J. Model consistency of partly smooth regularizers[J]. IEEE Transactions on Information Theory, 2018, 64(3): 1725-1747. doi: 10.1109/TIT.2017.2713822

    [21]

    Narasimhan F, Boyd S. CVXR: A package for disciplined convex optimization[J]. Journal of Statistical Software, 2020, 94(1): 1-34.

图(3)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-23
  • 录用日期:  2021-10-31
  • 刊出日期:  2022-10-19

目录

    /

    返回文章
    返回
    x