基于ShuffleNet的多尺度高效脑肿瘤分割网络

Multiscale Efficient Brain Tumor Segmentation Network Based on ShuffleNet

  • 摘要: 为解决硬件平台资源受限条件下精准实现脑肿瘤区域分割的需求,提出一种基于ShuffleNet的多尺度高效脑肿瘤分割网络。首先以ShuffleNet为基础构建深层特征提取网络,并加入多路平行卷积层和混合感受野增强网络的多尺度信息提取能力;其次,使用深度可分离卷积降低网络的参数量;最后提出一种加权混合损失函数缓解了数据类别不平衡对脑肿瘤分割的影响,提高了网络分割的稳定性。实验选取BraTS2019数据集进行训练和验证,并在BraTS2021临床病人数据集上进行临床测试。结果表明,所提的深层轻量级网络大幅度降低了参数量和计算量,同时具有较高的分割精度,且在增强肿瘤区域的分割问题上有更好的表现。

     

    Abstract: In this study, we propose a multiscale efficient brain tumor segmentation network using ShuffleNet to obtain a more accurate segmentation of brain tumor regions when using limited hardware platform resources. First, we design a deep feature extraction network based on ShuffleNet and added multiple parallel convolution layers and mixed receptive fields to enhance the multiscale information extraction capability of the network. Next, we apply a depthwise separable convolution to reduce the number of network parameters. Finally, we propose a weighted mixed loss function to alleviate the impact of data category imbalance on brain tumor segmentation and improve the stability of network segmentation. Furthermore, we employ the BraTS2019 dataset for training and validation and conduct clinical testing on the clinical patient dataset BraTS2021. The experimental results indicate that the proposed deep lightweight network reduces the number of network parameters and computations, has higher segmentation accuracy, and performs better in enhancing tumor region segmentation.

     

/

返回文章
返回