融合多元信息的激光SLAM回环检测方法

Laser SLAM Loop Detection Method with Multivariate Information

  • 摘要: 在同步定位与地图构建(simultaneous localization and mapping,SLAM)中,回环检测是一个重要且具有挑战性的问题。现有基于点云的回环检测通常只利用高度信息构建局部或者全局描述符,但其单一的描述能力导致错误的回环检测较多。为了解决这一问题,结合点云的高度、强度和密度信息,提出一种改进的全局描述符。为使用该全局描述符进行高效的回环检测,首先通过K维树(K-Dimensional Tree,KD-Tree)搜索数个回环候选帧,然后借用汉明距离的思想计算两帧点云对应全局描述符间的相似度,最后将相似度最高的帧确定为回环帧。实验使用公开数据集测试算法的性能,结果表明,算法具有更高的精确度和召回率,同时进行SLAM框架集成实验,获得更加优越的定位和建图精度。

     

    Abstract: In simultaneous localization and mapping (SLAM), loop detection is an important and challenging problem. Existing point cloud-based loop detection usually only uses height information to construct local or global descriptors, but its single description ability leads to many false loop detections. In order to solve this problem, combining the height, intensity and density information, an improved global descriptor is proposed. In order to use this global descriptor for efficient loop detection, several loop candidate is searched through K-Dimensional Tree (KD-Tree) firstly, and then the idea of Hamming distance is used to calculate the distance between two frame point clouds corresponding to the global descriptor. Finally, determine the frame with the highest similarity as the loop frame. The experiment uses public data sets to test the performance of the algorithm. The results show that, compared with the comparison algorithm, the algorithm has the higher precision and recall rate. At the same time, the SLAM framework integration experiment is carried out to obtain superior positioning and mapping accuracy.

     

/

返回文章
返回