基于太赫兹图像融合与深度学习的芯片缺陷检测方法

Defect Detection Method for Integrated Circuits Based on Terahertz Image Fusion and Deep Learning

  • 摘要: 由于太赫兹(THz)时域光谱技术能够有效获取半导体芯片内部结构的时域和频域信息,从而为半导体芯片产品内部结构成像和缺陷检测提供了可能。但由于单一频点的太赫兹图像特征表达能力不足,无法直接应用于工业领域。为此,充分利用不同频点的太赫兹光谱数据所蕴含的芯片不同特征信息,并开展图像融合方法的研究,采用多尺度变换将图像分离为低频和高频分量,并对低频分量和全通分量分别采用基于稀疏表示的融合算法和多尺度变换进行融合,建立了多尺度变换和稀疏表示的图像融合框架和重构算法,实现了对芯片特征信息的增强和图像成像精度的提高。同时,针对半导体芯片内部缺陷在线实时检测网络训练过拟合、效率低以及工业图像具有稀疏性、缺陷不明显等问题,通过构建半导体芯片缺陷检测数据集,研究了小样本状态下轻量级神经网络缺陷检测模型(LiCNN),并优化模型参数,实现精简的参数规模,实验验证LiCNN对小样本数据集缺陷检测的有效性,从而为半导体芯片内部缺陷的无损检测和质量控制提供理论方法指导。

     

    Abstract: Terahertz (THz) time-domain spectral technology can effectively obtain time and frequency domain information of internal IC structure and detect internal defects. However, it cannot be directly applied in industries because the single frequency images lack the ability of feature expression. Making full use of different characteristics of the chip contained in terahertz spectral data, we propose a fusion algorithm based on sparse representation and multi-scale decomposition that can fuse the low and all-pass frequency component separated from the multi-scale transform. Our findings show that the proposed algorithm effectively enhances the characteristics and improves the resolution of THz images. Moreover, we construct a semiconductor IC dataset and proposes lateral inhibition in a convolutional neural network (LiCNN) according to the IC characteristics of sparsity, non-obvious defect, and low defect probability. The optimized LiCNN achieves simplified parameters, and the validity of defect detection using LiCNN is verified in a small sample dataset. Our proposed method provides IC defect detection techniques for nondestructive testing and quality control.

     

/

返回文章
返回