变批次长度非线性时滞系统的迭代学习控制

Iterative Learning Control for Nonlinear Time-delay Systems with Varying Trail Lengths

  • 摘要: 针对一类变批次长度的非线性系统,研究了其带输入时滞情况下的期望轨迹跟踪PD(proportional-derivative)型迭代学习控制问题。批次长度变化通过系统在时刻点输出的概率进行描述,其造成的跟踪误差信息缺失使用零补偿方法进行修正,以便于不同批次控制律的全时间轴信息更新;然后基于给定超前法设计PD型迭代学习控制算法,消除输入时滞对控制律更新的影响;再根据数学期望与范数分析证明了所提算法能够保证跟踪误差在初始状态相同时严格收敛,在初始状态不同时期望收敛。最后通过直流电机驱动单杆系统的输出跟踪控制仿真验证了所提算法的有效性。

     

    Abstract: For a class of nonlinear systems with varying trail lengths, we study the PD-type iterative learning control problem of desired trajectory tracking with input time delay. We describe the varying trail length by the probability of the system output at the time point and correct the lack of tracking error information caused by it using the zero-compensation mechanism to facilitate the update of complete time axis information of different iteration control laws. Then, we design a PD-type iterative learning control algorithm based on the given advanced method to eliminate the influence of the input time delay on the control law update. We prove that the proposed algorithm can ensure that the tracking error converges strictly when the initial states are the same and expects to converge when the initial states are different using the mathematical expectation and norm analysis. Finally, the simulation results of the output tracking of a single-link system driven by a DC motor validate the effectiveness of the proposed algorithm.

     

/

返回文章
返回