基于动态反向学习和莱维飞行的双搜索模式萤火虫算法

Double Search Mode Firefly Algorithm Based on Dynamic Reverse Learning and Levy Flight

  • 摘要: 针对多目标萤火虫算法在解决复杂多目标问题时存在收敛性差和分布性不足的问题,提出了基于动态反向学习和莱维飞行的双搜索模式萤火虫算法(MOFA-LR)。该算法通过比较任意一只萤火虫与种群中其余萤火虫的适应度值,判断它们之间的支配关系,根据不同的支配关系选择不同的搜索模式。当萤火虫被支配时,应注重向帕累托前沿上的优质解靠近,因此通过动态反向学习策略求出当前个体的反向解,使用反向解结合全局最优解共同引导萤火虫移动的搜索模式,能够发掘潜在的较好解,使萤火虫最大可能地向有利方向移动,改善了算法的收敛性;当萤火虫不被支配时,应注重获得均匀分布的帕累托前沿,因此使用全局最优解引导萤火虫飞行并结合莱维扰动的搜索模式,既能有效利用非支配解的优良信息,又能避免算法陷入停滞,在改善算法收敛性的同时维护了分布性。最后,为避免算法在迭代后期出现萤火虫严重聚集的现象,添加变异算子帮助种群跳出局部最优,引导种群进行局部开采。将MOFA-LR与12种新近多目标优化算法进行比较,实验结果表明,MOFA-LR具有良好的收敛性和分布性,证明了所提策略的有效性。

     

    Abstract: Aiming at the problems of poor convergence and insufficient distribution of multi-objective firefly algorithm in solving complex multi-objective problems, we propose a double search mode firefly algorithm based on dynamic reverse learning and levy flight (MOFA-LR). By comparing the fitness values of any firefly with other fireflies in the population, the algorithm judges the dominance relationship between them, and selects different search modes according to different dominance relationships. When fireflies are dominant, we should pay attention to the quality on the pareto frontier solution near. By dynamic reverse learning strategies, the reverse of the current individual solution using reverse solution combining the global optimal solution to guide the firefly mobile search mode, better to explore potential solutions, make the fireflies best possible to favourable

     

/

返回文章
返回