基于混合网络的锂离子电池健康状态与剩余使用寿命联合估计方法

Joint Estimation Method of State of Health and Remaining Useful Life for Lithium-ion Batteries Based on Hybrid Networks

  • 摘要: 为高效准确实现锂电池健康状态(state of health,SOH)和剩余使用寿命(remaining useful life,RUL)预测,提出了一种基于混合网络的锂离子电池SOH与RUL联合估计方法。首先,建立锂电池间接健康特征(health factor,HF)提取框架,以HF为输入,容量为输出,使用卷积神经网络(convolutional neural network,CNN)和门控循环单元网络(gated recurrent unit,GRU)构成CNN-GRU电池SOH估计模型,对电池SOH进行估计;然后利用SOH估计结果和SOH真实值建立CNN-GRU电池RUL预测模型,对电池RUL进行预测。实验结果表明,SOH估计最大均方根误差在2.31%以内,RUL预测误差在5.29%以内,该方法可以实现锂电池SOH和RUL较为全面的评估。

     

    Abstract: To efficiently and accurately predict the state of health (SOH) and remaining useful life (RUL) of lithium-ion batteries, we propose a hybrid network-based joint estimation method of lithium-ion batteries SOH and RUL. First, we develop a framework for the indirect health factor (HF) extraction of lithium batteries and form a convolutional neural network (CNN)-recurrent gated unit (GRU) battery SOH estimation model using a CNN and GRU with HF as the input and capacity as the output. Second, we build a CNN-GRU battery RUL prediction model using the SOH estimation results and the true SOH values to predict the RUL. Experimental results show that the maximum root mean square error of SOH estimation is 2.31%, and the RUL prediction error is 5.29%. Therefore, the method can comprehensively assess the SOH and RUL of lithium batteries.

     

/

返回文章
返回