面向工业物联网的5G机器学习研究综述

Review of Machine Learning-based 5G for Industrial Internet of Things

  • 摘要: 随着计算机技术不断应用于工业物联网,工业系统中的数据传输愈加需要支持高实时、高可靠、高带宽以及海量连接的特性。传统的网络已经无法满足这些需求,5G网络因其高速率、低时延、支持海量连接以及良好的移动性等优越性能已成为当前工业物联网领域的研究热点。本文对面向工业网络的5G机器学习方法进行了综述,首先分析了5G网络通信技术领域的大规模天线、终端直连、移动边缘计算以及异构超密集组网等关键技术,其次介绍了人工智能技术以及作为其重要组成部分的机器学习技术,同时总结了将机器学习技术引入5G网络以解决具体问题的方法并对之进行了总结与展望,最后提出了5G通信技术的未来研究趋势。

     

    Abstract: With the continuous application of computer technology to the industrial internet of things, data transmission in industrial systems needs to support high real-time, high reliability, high bandwidth and massive connections. Traditional networks can no longer meet these needs, and 5G networks have become a research hotspot in the field of industrial internet of things due to their superior performance such as high speed, low latency, support for massive connections and good mobility. We review the 5G machine learning methods for industrial networks, first analyzes the key technologies such as large-scale antennas, terminal direct connection, mobile edge computing and heterogeneous ultra-dense networking in the field of 5G network communication technology, then introduce artificial intelligence technology and machine learning technology as an important part of it, summarize and prospect the methods of introducing machine learning technology into 5G network to solve specific problems, and finally put forward the future research trend of 5G communication technology.

     

/

返回文章
返回