融合动态目标跟踪的视觉SLAM算法

Visual SLAM Algorithm of Integrating Dynamic Target Tracking

  • 摘要: 为提高机器人在动态场景下的SLAM(simultaneous localization and mapping)精度,同时实现对动态目标的跟踪,提出了一种融合动态目标的视觉SLAM方法。首先,通过预处理模块获取RGB(red,green,blue)图像的光流向量、实例分割结果及深度图信息;其次,迭代求解相机位姿、地图点和动态目标位置的初始值;最后,通过一种改进的因子图优化方法对3种状态变量的初始值进行联合优化。在KITTI数据集上的测试实验结果表明,该算法实现了融合动态目标跟踪的视觉SLAM功能,同时有效地提高了动态目标的跟踪精度及动态场景下的SLAM精度,总体效果优于VDO-SLAM(visual dynamic object-aware SLAM)。

     

    Abstract: To improve the accuracy of simultaneous localization and mapping(SLAM) for robots in dynamic environments and enable dynamic target tracking, we propose a visual SLAM algorithm that integrates dynamic target tracking. First, we obtain the optical flow vector, instance segmentation results, and depth map information of red-green-blue (RGB) images through a preprocessing module. Second, we iteratively solve for initial values of camera pose, map points, and dynamic target positions. Finally, we jointly optimize these initial values using an improved factor graph optimization method. Experiments conducted on the KITTI dataset demonstrate that our algorithm successfully combines visual SLAM with dynamic target tracking, significantly improving the accuracy of dynamic target tracking and SLAM in dynamic scenes. The overall performance surpasses that of visual dynamic object-aware SLAM(VDO-SLAM).

     

/

返回文章
返回