基于视觉的机器人端到端策略抓取估计综述

Review of Vision-based Robot End-to-end Strategic Grasping Estimation

  • 摘要: 人工智能技术的迅速发展和不断突破为智能机器人抓取性能提升创造了很大空间。抓取估计是机器人实现抓取任务的关键,直接影响后续的抓取规划和抓取控制系统。端到端抓取策略不需要分步进行目标定位和目标姿态估计,直接从输入数据中学习并输出抓取信息。本文从平面级抓取和空间级抓取两方面综述基于视觉的端到端策略抓取估计方法,将平面级抓取方法分为估计抓取接触点和估计定向矩形两类,将空间级抓取方法分为面向对象和面向场景两类。此外,本文还对相关的数据集和抓取评估指标进行了简单介绍,指出了基于视觉的机器人端到端策略抓取估计方法面临的挑战及未来的发展方向。

     

    Abstract: The rapid development and continuing breakthroughs in artificial intelligence technology have greatly improved the grasping capabilities of intelligent robots. Grasp estimation is critical for robots to perform grasping tasks, which directly affects subsequent grasping planning and control systems. Unlike traditional approaches requiring step-by-step target localization and pose estimation, end-to-end grasping strategies directly learn and output grasping information from input data. We review vision-based end-to-end strategic grasping estimation methods, covering planar-level and spatial-level grasping methods. Planar-level grasping methods are categorized into estimating grasping contact points and estimating oriented rectangles. Spatial-level grasping methods are also divided into two categories: object-oriented and scene-oriented approaches. In addition, we introduce relevant datasets and grasping evaluation metrics and highlights the challenges and future directions in vision-based end-to-end grasping estimation for robots.

     

/

返回文章
返回