基于ViBe的图像语义标签制作方法

Image Semantic Labeling Method Based on ViBe

  • 摘要: 针对人工标定图像分割语义标签数据集的制作较为耗时、效率低下的问题,提出基于ViBe(Visual Background Extractor)算法的日常物体语义标签快速制作方法,并对该方法中前景点像素随时间更新的问题,采用事件触发背景更新机制有效降低了前景目标的空洞现象。首先,采集实验所需的视频序列并进行预处理,采用ViBe算法检测图像中动态目标并进行前景分割,通过滑动窗口算法提取图像帧序列中的目标关键帧;然后,对提取的关键帧进行二值化、图像滤波与标签像素分类填充,得到标签图像。从实验结果分析得到,该方法有效简化了语义标签数据集的制作过程,特别是优化后的算法能实现较高的标签像素覆盖精确度,标签覆盖平均精确度达97.18%,平均单帧视频图像处理时间为96.10 ms。

     

    Abstract: Currently, the production of image segmentation semantic label datasets relies on manual annotation, which is labor-intensive and inefficient. We propose a fast image semantic labeling method for common objects to address these challenges based on the visual background extractor (ViBe) algorithm. To mitigate the issue of foreground point pixel updates over time before processing the keyframes, we introduce an event-triggered background update mechanism, effectively reducing the occurrence of voids in the foreground target. First, we collect and preprocess video sequences for experiments. We apply the ViBe algorithm to detect dynamic objects in images and perform foreground segmentation. Then, we extract keyframes of target objects from the image sequences using a sliding window algorithm. Next, we binarize the extracted keyframes, apply image filtering, and perform label pixel classification and filling to generate labeled images. Experimental results demonstrate that this method substantially simplifies the production process of semantic label datasets. Notably, the optimized algorithm achieves high label coverage accuracy, with an average coverage accuracy of 97.18%, while maintaining an average processing time of 96.10 ms per frame.

     

/

返回文章
返回