基于改进灰狼算法的润叶机控制参数优化

Optimization of Control Parameters of Leaf-wetting Machine Based on Improved Gray Wolf Algorithm

  • 摘要: 针对仅靠人工经验调节润叶机相关控制参数难以准确适应外界因素和来料特性波动的问题,提出了一种烟叶质量预测和工艺参数自适应优化的方法。首先,通过系统的分析工艺流程,归纳关键控制参数和影响其调控的主要因素;其次,采用贝叶斯优化极度梯度提升树算法拟合工艺参数与出口烟叶含水率和温度的关系;最后,以标准的出口烟叶质量作为优化目标获取全局最优解。为了稳定润后烟叶质量和润叶机运行状态,本文基于灰狼算法进行了改进,提出了有界稳定惩罚灰狼算法。该算法融入了自适应惩罚函数和稳定性优化,加快算法收敛速度的同时降低了控制参数的波动。实验结果表明,与人工调节相比,所提方法使出口烟叶的含水率和温度波动范围值分别降低了42.5%和29.9%,并且优化参数后润叶机运行更平稳。

     

    Abstract: We address the challenge of adapting to external factors and fluctuations in incoming material characteristics in leaf-wetting machines, which traditionally rely on manual experience to regulate control parameters. Our approach predicts tobacco quality prediction and adaptively optimizes process parameters. First, we identify key control parameters and factors affecting their regulation by systematically analyzing the process flow. We then apply a Bayesian optimization extreme gradient boosting tree algorithm to model the relationship between process parameters and the moisture content and temperature of exported tobacco. Finally, using the standard quality of exported tobacco as our optimization objective, we determine the global optimal solution. To stabilize tobacco quality after wetting and improve the leaf-wetting machine's operation, we introduce an improved gray wolf algorithm with bounded stability and an adaptive penalty function. This approach accelerates convergence speed and reduces control parameter fluctuations. Experimental results show that our method reduces the moisture content and temperature fluctuation ranges of exported tobacco by 42.5% and 29.9%, respectively, compared to manual adjustments, ensuring smoother operation of the leaf-wetting machine.

     

/

返回文章
返回