基于采样区域限制RRT的机械臂路径规划算法

RRT Path Planning Algorithm Based on Sampling Area Restriction for Manipulator

  • 摘要: 针对传统RRT (Rapidly-exploring Random Tree)算法在进行机械臂路径规划时存在的采样随机性过大、搜索效率低下、所规划的路径曲折等问题,提出一种基于采样区域限制的改进RRT (Sampling Area Restriction RRT,SAR-RRT)算法。首先,针对随机性过大的问题,通过引入目标偏置策略来增强随机树的目标导向性,并采用球形采样区域以及角度限制策略对算法的采样进行约束,减少算法对无用空间区域的探索。其次,为提升算法的搜索效率,对随机树的节点扩展进行自适应优化,采用多步长扩展,使算法能够充分利用环境与障碍物的信息,同时利用贪婪思想加快随机树的收敛从而缩短路径的生成时间。最后,对初始规划出的路径进行二次优化处理,在去除路径中的冗余点后以三次B样条曲线对路径进行平滑处理,提升所规划路径的质量。实验结果表明,在2维及3维场景下,SAR-RRT算法均可以顺利完成路径规划任务。对比传统RRT算法,改进算法总体上使路径长度降低27.73%,规划时间缩短85.25%,采样点数减少87.19%且所生成的路径更加平滑。

     

    Abstract: To address the issues of excessive sampling randomness, low search efficiency, and zigzagging in traditional rapidly-exploring random tree (RRT) algorithms for robot path planning, we propose an improved RRT algorithm with a sampling area restriction strategy (SAR-RRT). First, to mitigate excessive randomness, we enhance the target orientation of the random tree by introducing a target bias strategy. And we constrain sampling using a spherical sampling region and an angular restriction strategy, which limits exploration in unnecessary spatial regions. Second, to improve search efficiency, we adaptively optimize the node expansion of the random tree. A multi-step expansion strategy is employed to maximize the use of environmental and obstacleinformation, while a greedy approach accelerates tree convergence, reducing path generation time. Finally, we apply secondary optimization to the initial planned path. After removing redundant points, we smooth the path using a cubic B-spline curve, improving overall path quality. Experimental results demonstrate that the SAR-RRT algorithm completes path-planning tasks in 2D and 3D scenarios. Compared with the traditional RRT algorithm, the proposed method reduces path length by 27. 73%, planning time by 85. 25%, and sampling points by 87. 19% while generating a smoother path.

     

/

返回文章
返回